ECSE324 : Computer Organization

Processor Pipeline
Chapter 6

Christophe Dubach
Fall 2023

Revision history:

Warren Gross - 2017

Christophe Dubach - W2020, F2020, F2021, F2022, F2023

Brett H. Meyer - W2021, W2022, W2023

Some material from Hamacher, Vranesic, Zaky, and Manjikian, Computer Organization and Embedded Systems, 6 th ed, 2012, McGraw Hill,
and “Introduction to the ARM Processor using Altera Toolchain.

Timestamp: 2023/11/20 09:33:00

Disclaimer

It is possible (and even likely) that | will (sometimes) make mistakes
and give incorrect information during the live lectures. If you have
any doubts, please check the textbook, or ask for clarification online.

Reacap about the Datapath: Stages 2-5

- Inter-stage registers RA, RA, RZ,
RM, and RY are used to carry data
from one stage to the next

- Register file: used in stages 2 and
5; first, to read operands

- ALU: used in stage 3
- Memory: used in stage 4

- Write-back: the final stage is
used to write the result to the
register file

Address A —|

Address B —f

|- AddressC

Pipelining

Textbook§6.1-6.3

Consider doing laundry. If each operation requires one hour, the
latency per load is three hours.

Wash Dry Fold Wash Dry Fold
T 00 ©) I:ln@ v O ;
@ 0000000 @ @ 00000000
00000000
_____ \ 1000000)

Two loads? Six hours total.

What happens if we make use of washer and dryer simultaneously
on different loads?

Wash

ﬁ

Fold

Six hours, with ? loads, instead of two.

What is pipelining?

Pipelining is applying the “assembly line” concept to the execution of
instructions:

- Instruction execution is divided into distinct steps (like we've
already done)
- Multiple instructions are executed simultaneously by
overlapping the steps of different instructions:
- Only one instruction is started at a time

- Each hardware stage is working on a different instruction
- This keeps all stages busy, dramatically improving performance

Ideal Pipelining

In the ideal case, a new instruction is started each clock cycle, and
each instruction only takes a single cycle in each step.

Clock cycle 1 2 3 4 5 6 7

I | Fetch I Decode |Compule I Memory | Write I

| Fetch I Decode ICompure I Memory | Write I

I Fetch I Decode I Compute I Memory I Write I

What are some reasons why this ideal may not be always achievable?

Pipeline Organization

- Use PC to fetch a new instruction every* cycle

- Instruction-specific information moves with instructions through
the different stages

- Interstage buffers (pipeline registers) hold this information,
incorporating RA, RB, RM, RY, RZ, IR, and PC-Temp registers

- The buffers also hold control signals: e.g.,, mux inputs are
determined during decode, but applied when appropriate

* Except when something prevents an instruction from advancing!

Pipeline Organization

Instruction
fetch

Interstage buffer B1

Register Instruction
file decode

! !

| Interstage buffer B2 I

Compute

[Interstage buffer B3 |

!

Memory
access

!

| Tnterstage buffer B4 |

L

Datapath operands Source/destination Control signals
and results register identifiers for different stages
and other information

Pipeline Stall

Textbook§6.4-6.7

What can stall the pipeline?

Instructions advance, one stage per cycle, unless something occurs
to stall an instruction. Circumstances in which one instruction
causes a delay in another instruction are called hazards, and they
come in three flavors.

- Structural hazards: caused by contention for a shared resource
(e.g., memory)

- Data hazards: occur when one instruction must wait for the
result of another

- Control hazards: caused by branch instructions delaying
instruction fetch

Instructions may also be delayed when our assumption that each
stage takes a single cycle is violated (e.g., when a memory access
results in a cache miss).

Data Dependencies

Consider the following assembly.

ADD R2, R3, R7 // R2 <-- R3 + R7
SUB R9, R2, R8 // R9 <-- R2 - R8

R2 is the (a) destination of the add instruction, and (b) source for the
subtract instruction.

- There is a data dependency between ADD and SUB: SUB cannot
be executed until we have the result of the ADD.

- With no pipelining, there’s no problem: the result is in R2
because ADD completes before SUB begins.

- With pipelining, SUB starts before ADD finishes.

1

Data Hazards

ADD R2, R3, R7 // R2 <-- R3 + R7
SUB R9, R2, R8 // R9 <-- R2 - R8

Suppose ADD is instruction /; and SUB is instruction [j4:

Clock cycle 1 2 3 4 5 6 7

1.

| Fetch I Decode | Compute I Memory | Write |
J

el I Fetch I Decode ICompure I Memory | Write I

* lj41 reads its operands in cycle 3

- But the result of J; is written in cycle 5 (to be read in cycle 6)

- I and l;;, cannot execute simultaneously because of the data
dependency

- This is a data hazard

To resolve this, we delay SUB until its operands are available.

Stalling the Pipeline

—» Time

Clock cycle 1 2 3 4 5 6 7 8 9
ADD R2, R3, R7 IFIDICIMIWI
SUB R, R2, R8 | F | D | C | M | w |

We must delay the SUB instruction until it can read the result of the
ADD from R2.

- R2 is written in cycle 5
- R2 can beread in cycle 6
- The CPU discovers the dependency during decode in cycle 3

- SUB stalls in decode for three cycles (3, 4, 5) before reading R2
incycle 6

Stalling the Pipeline

— Time

Clock cycle 1 2 3 4 5 6 7 8 9
ADD R2, R3, R7 IFIDICIMIWI
SUB R, R2, R8 | F | D | C | M | W |

Control circuitry detects the dependencies during decode.
- Interstage buffers carry register identifiers for source(s) and
destination of instructions

- In cycle 3, control compares the destination register in Compute
(R2) against source(s) in Decode (R2 and R8)

- In this case, R2 matches; SUB is kept in Decode while ADD is
allowed to continue

14

Stalling the Pipeline

What happens when ADD leaves Compute and enters Memory?

- B1 is not clocked, holding SUB in decode

- Meanwhile, control signals in Compute are
set to create an implicit NOP (no-operation) A

+ These NOPs (also called bubbles) propagate]
through the pipeline -

- Then, Control compares sources in Decode []
and destinations in later stages =

- The dependency remains (ADD in Memory); l
SUB is stalled again (B1 not clocked)

- This repeats until the dependency clears

— Time

Clock cycle 1 2 3 4 5 6 7 8 9

ADD R2, R3, R7 EHEIEEER

SUB R9, R2, R8 | F | D | C | M | W |

Can we avoid stalling?

We can avoid some hazards by adding extra hardware to the
pipeline, and more complex logic to the control circuitry.

- Operand forwarding handles some data dependencies without
stalling the pipeline
- In our example, ADD’s result is in RZ (within B3) in cycle 4

- We can add inputs to our ALU operand muxes and forward the
result from stage 4 to stage 3

— Time
Clock cycle 1 2 3 4 N 6

ADD R2, R3, R7 |FID|CIMIWI

N\
SUB RY, R2, R8 [Flofc]mfw]

16

Forwarding: Memory to Compute

C
Register
file
A B
| RA | | RB |
1 1

— Immediate value

Forwarding: Write-back to Compute

If an instruction separates two with a dependency, we still must stall
if we cannot forward. Solution: add more forwarding paths!

ADD R2, R3, R7 // R2 <-- R3 + R7
ORR R4, R5, R6 // R4 <-- R5 || R6
SUB R9, R2, R8 // R9 <-- R2 - R8

Clock cycle 1 2 3 4 5

6 7

| | Feich | Decode I Compute I Memory I Write I

l

Ly | Fetch | Decode I(‘nmpute | Memory | Wite |

L | reteh | Decode | compute | Memory | write |

Mux inputs must also be added to accept forwarding from Write-back.

Handling Dependencies in Software

Data dependencies are evident during assembly, and can therefore
be handled in software (if, e.g., we do not intend to detect or mitigate
them in hardware).

- The assembler inserts

th ree eX:D[/CIt NOP Clock cycle 1 2 3 4 5 6 7 8 _9- fime
Instructions worz iRy [T <]
* SUB doeS nOt enter NOP n
decode‘untll Fhe result o
of ADD is availble
Nor
- The assembler can
SUBRY, R2, RS HEEEE

optimize, replacing
NOP with independent
instructions

19

Memory Delays

Cache misses can delay instructions in either the Fetch or Memory

stages, e.g.,

— Time
Clock cycle 1 2 3 4 5 6 7 8 9
pload R2RY) | F[Dpfc]wm IER
ljss R [v]w]
bz Lr]> K ERER

20

Memory Delays

Even when a load hits in cache, there may be delay due to a data
dependency.

- A one-cycle stall is required before the result can be forwarded
from the Write-back stage
- Optimize by inserting a useful instruction between the two

—» Time
Clock cycle | 2 3 4 5 6 7

Load R2,(R3) F D clM|w

Subtract R9, R2. #30 F D C M W

21

Control Hazards

Remember that ideal pipelining expects that we can fetch a new
instruction each cycle, while the previous instruction is decoded.

- Branch instructions must (a) compute the target address, and
(b) potentially compare registers

-+ This comparison determines whether to go to the target
address, or execute the fall-through instruction

- A hazard occurs because these operations occur in later stages
(e.g., Compute)

22

Unconditional Branches

Clock cycle 1 2 3 4 5 6 7 8

(o]

Ij:Branchtolk I F I D I

o

Lin1 I F |

b el T T T |

Lelofcfufw]

|

Branch penalty

- Target address (offset + (PC + 4)) is computed in cycle 3
- Meanwhile, fetch in cycles 2 (PC + 4) and 3 ((PC + 4) + 4)

- These instructions are discarded, resulting in a 2 cycle penalty

23

Reducing the Branch Penalty: hardware-based approach

—» Time
Clock cycle 1 2 3 4 5 6 7 8

I;: Branch to Iy I F I D I ¢ I I I
I/+1 I F | D I I I |
lj+2 I F I I I I I

l Lelofcfufw]

—
Branch penalty

We can reduce the branch penalty by computing the target earlier.

- Add an adder to the decode stage
- This shortens the branch penalty by one cycle

We are adding HW (i.e,, cost and energy) to improve performance.
24

Conditional Branches

’BEQ R5, R6, label // If R5 == R6, PC <-- PC + displacement ‘

- Conditional branches must compute the target address and
compare registers

- We can compute the target in Decode with an extra adder

- We can also make a comparison in Decode with an extra
comparator

We are adding hardware again to improve performance.

25

Reducing the Branch Penalty: software-based approach

An alternative to adding hardware consists, instead, of always leting
the two instructions that follow a branch finish execution.

This is called a delay slot (there may be more than one) and this is a
feature visible to the programmer.

Intended sequence of Actual sequence of instructions
instructions: written by the programmer:
ORR R4, R5, R6 ORR R4, R5, R6

SUB R3, R3, R8 BEQ label1

AND R1, R9, RS SUB R3, R3, R8 // delay slot
BEQ Tlabel1 AND R1, R9, R8 // delay slot
MOV R6, #7 MOV R6, #7

The instructions in the delay slot always execute, because the
processor finish executing all the instructions that have entered the
pipeline (not wasting the fetch/decoding stage). %

What's Next?

This lecture has introduced the basics of processor pipelining. We've
looked at:

- Pipelining;
- Data hazards;
- Path forwarding.

Next we'll look at computer hardware for arithmetic.

27

	Pipelining Textbook§6.1-6.3
	Pipeline Stall Textbook§6.4-6.7

