
ECSE324 : Computer Organization
Processor Pipeline
Chapter 6

Christophe Dubach
Fall 2023

Revision history:

Warren Gross – 2017

Christophe Dubach – W2020, F2020, F2021, F2022, F2023

Brett H. Meyer – W2021, W2022, W2023

Some material from Hamacher, Vranesic, Zaky, and Manjikian, Computer Organization and Embedded Systems, 6 th ed, 2012, McGraw Hill,

and “Introduction to the ARM Processor using Altera Toolchain.”

Timestamp: 2023/11/20 09:33:00

1

Disclaimer

It is possible (and even likely) that I will (sometimes) make mistakes
and give incorrect information during the live lectures. If you have
any doubts, please check the textbook, or ask for clarification online.

2

Reacap about the Datapath: Stages 2-5

• Inter-stage registers RA, RA, RZ,
RM, and RY are used to carry data
from one stage to the next

• Register file: used in stages 2 and
5; first, to read operands

• ALU: used in stage 3
• Memory: used in stage 4
• Write-back: the final stage is
used to write the result to the
register file

3

Pipelining
Textbook§6.1-6.3

Example

Consider doing laundry. If each operation requires one hour, the
latency per load is three hours.

Wash Dry Fold Wash Dry Fold

Two loads? Six hours total.

This is inefficient when there’s a lot of laundry: when the dryer is
working, the washer is idle!

4

Example

What happens if we make use of washer and dryer simultaneously
on different loads?

Wash Dry Fold

Wash Dry Fold

Wash Dry Fold

Wash Dry Fold

Six hours, with pipelining? Four loads, instead of two.

5

What is pipelining?

Pipelining is applying the “assembly line” concept to the execution of
instructions:

• Instruction execution is divided into distinct steps (like we’ve
already done)

• Multiple instructions are executed simultaneously by
overlapping the steps of different instructions:

• Only one instruction is started at a time
• Each hardware stage is working on a different instruction
• This keeps all stages busy, dramatically improving performance

6

Ideal Pipelining

In the ideal case, a new instruction is started each clock cycle, and
each instruction only takes a single cycle in each step.

What are some reasons why this ideal may not be always achievable?

7

Pipeline Organization

• Use PC to fetch a new instruction every∗ cycle
• Instruction-specific information moves with instructions through
the different stages

• Interstage buffers (pipeline registers) hold this information,
incorporating RA, RB, RM, RY, RZ, IR, and PC-Temp registers

• The buffers also hold control signals: e.g., mux inputs are
determined during decode, but applied when appropriate

∗ Except when something prevents an instruction from advancing!

8

Pipeline Organization

9

Pipeline Stall
Textbook§6.4-6.7

What can stall the pipeline?

Instructions advance, one stage per cycle, unless something occurs
to stall an instruction. Circumstances in which one instruction
causes a delay in another instruction are called hazards, and they
come in three flavors.

• Structural hazards: caused by contention for a shared resource
(e.g., memory)

• Data hazards: occur when one instruction must wait for the
result of another

• Control hazards: caused by branch instructions delaying
instruction fetch

Instructions may also be delayed when our assumption that each
stage takes a single cycle is violated (e.g., when a memory access
results in a cache miss).

10

Data Dependencies

Consider the following assembly.

ADD R2, R3, R7 // R2 <-- R3 + R7
SUB R9, R2, R8 // R9 <-- R2 - R8

R2 is the (a) destination of the add instruction, and (b) source for the
subtract instruction.

• There is a data dependency between ADD and SUB: SUB cannot
be executed until we have the result of the ADD.

• With no pipelining, there’s no problem: the result is in R2
because ADD completes before SUB begins.

• With pipelining, SUB starts before ADD finishes.

11

Data Hazards

ADD R2, R3, R7 // R2 <-- R3 + R7
SUB R9, R2, R8 // R9 <-- R2 - R8

Suppose ADD is instruction Ij and SUB is instruction Ij+1:

• Ij+1 reads its operands in cycle 3
• But the result of Ij is written in cycle 5 (to be read in cycle 6)
• Ij and Ij+1 cannot execute simultaneously because of the data
dependency

• This is a data hazard

To resolve this, we delay SUB until its operands are available.
12

Stalling the Pipeline

ADD R2, R3, R7

SUB R9, R2, R8

We must delay the SUB instruction until it can read the result of the
ADD from R2.

• R2 is written in cycle 5
• R2 can be read in cycle 6
• The CPU discovers the dependency during decode in cycle 3
• SUB stalls in decode for three cycles (3, 4, 5) before reading R2
in cycle 6

13

Stalling the Pipeline

ADD R2, R3, R7

SUB R9, R2, R8

Control circuitry detects the dependencies during decode.

• Interstage buffers carry register identifiers for source(s) and
destination of instructions

• In cycle 3, control compares the destination register in Compute
(R2) against source(s) in Decode (R2 and R8)

• In this case, R2 matches; SUB is kept in Decode while ADD is
allowed to continue

14

Stalling the Pipeline

What happens when ADD leaves Compute and enters Memory?

• B1 is not clocked, holding SUB in decode
• Meanwhile, control signals in Compute are
set to create an implicit NOP (no-operation)

• These NOPs (also called bubbles) propagate
through the pipeline

• Then, Control compares sources in Decode
and destinations in later stages

• The dependency remains (ADD in Memory);
SUB is stalled again (B1 not clocked)

• This repeats until the dependency clears

ADD R2, R3, R7

SUB R9, R2, R8 15

Can we avoid stalling?

We can avoid some hazards by adding extra hardware to the
pipeline, and more complex logic to the control circuitry.

• Operand forwarding handles some data dependencies without
stalling the pipeline

• In our example, ADD’s result is in RZ (within B3) in cycle 4
• We can add inputs to our ALU operand muxes and forward the
result from stage 4 to stage 3

ADD R2, R3, R7

SUB R9, R2, R8

16

Forwarding: Memory to Compute

17

Forwarding: Write-back to Compute

If an instruction separates two with a dependency, we still must stall
if we cannot forward. Solution: add more forwarding paths!

ADD R2, R3, R7 // R2 <-- R3 + R7
ORR R4, R5, R6 // R4 <-- R5 || R6
SUB R9, R2, R8 // R9 <-- R2 - R8

Mux inputs must also be added to accept forwarding from Write-back.

18

Handling Dependencies in Software

Data dependencies are evident during assembly, and can therefore
be handled in software (if, e.g., we do not intend to detect or mitigate
them in hardware).

• The assembler inserts
three explicit NOP
instructions

• SUB does not enter
decode until the result
of ADD is availble

• The assembler can
optimize, replacing
NOP with independent
instructions

ADD R2, R3, R7

SUB R9, R2, R8

19

Memory Delays

Cache misses can delay instructions in either the Fetch or Memory
stages, e.g.,

20

Memory Delays

Even when a load hits in cache, there may be delay due to a data
dependency.

• A one-cycle stall is required before the result can be forwarded
from the Write-back stage

• Optimize by inserting a useful instruction between the two

21

Control Hazards

Remember that ideal pipelining expects that we can fetch a new
instruction each cycle, while the previous instruction is decoded.

• Branch instructions must (a) compute the target address, and
(b) potentially compare registers

• This comparison determines whether to go to the target
address, or execute the fall-through instruction

• A hazard occurs because these operations occur in later stages
(e.g., Compute)

22

Unconditional Branches

• Target address (offset + (PC + 4)) is computed in cycle 3
• Meanwhile, fetch in cycles 2 (PC + 4) and 3 ((PC + 4) + 4)

• These instructions are discarded, resulting in a 2 cycle penalty

23

Reducing the Branch Penalty: hardware-based approach

We can reduce the branch penalty by computing the target earlier.

• Add an adder to the decode stage
• This shortens the branch penalty by one cycle

We are adding HW (i.e., cost and energy) to improve performance.
24

Conditional Branches

BEQ R5, R6, label // If R5 == R6, PC <-- PC + displacement

• Conditional branches must compute the target address and
compare registers

• We can compute the target in Decode with an extra adder
• We can also make a comparison in Decode with an extra
comparator

We are adding hardware again to improve performance.

25

Reducing the Branch Penalty: software-based approach

An alternative to adding hardware consists, instead, of always leting
the two instructions that follow a branch finish execution.

This is called a delay slot (there may be more than one) and this is a
feature visible to the programmer.

Intended sequence of
instructions:

...
ORR R4, R5, R6
SUB R3, R3, R8
AND R1, R9, R8
BEQ label1
MOV R6, #7
...

Actual sequence of instructions
written by the programmer:

...
ORR R4, R5, R6
BEQ label1
SUB R3, R3, R8 // delay slot
AND R1, R9, R8 // delay slot
MOV R6, #7
...

The instructions in the delay slot always execute, because the
processor finish executing all the instructions that have entered the
pipeline (not wasting the fetch/decoding stage). 26

What’s Next?

This lecture has introduced the basics of processor pipelining. We’ve
looked at:

• Pipelining;
• Data hazards;
• Path forwarding.

Next we’ll look at computer hardware for arithmetic.

27

	Pipelining Textbook§6.1-6.3
	Pipeline Stall Textbook§6.4-6.7

