
ECSE324 : Computer Organization
Processor Design
Textbook§Chapter 5

Christophe Dubach
Fall 2023

Revision history:
Warren Gross – 2017
Christophe Dubach – W2020, F2020, F2021, F2022, F2023
Brett H. Meyer – W2021, W2022, W2023
Some material from Hamacher, Vranesic, Zaky, and Manjikian, Computer Organization and Embedded Systems, 6 th ed, 2012, McGraw Hill
and Patterson and Hennessy, Computer Organization and Design, ARM Edition, Morgan Kaufmann, 2017, and notes by A. Moshovos

Timestamp: 2023/09/25 17:07:00

1



Disclaimer

It is possible (and even likely) that I will (sometimes) make mistakes
and give incorrect information during the live lectures. If you have
any doubts, please check the textbook, or ask for clarification online.

2



Transistors



Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET)

Cross-sectional view of a MOSFET:
Gate

Source Drain

Body

p

Gate Oxide
n n

source: VectorVoyagerPNG version: user:rogerb, CC BY-SA 3.0, via Wikimedia Commons

n-type

Gate
Source Drain

Body

n

Gate Oxide
p p

source: VectorVoyagerPNG version: user:rogerb, CC BY-SA 3.0, via Wikimedia Commons

p-type

• N-type transistors take their source from the ground or another
N-type transistor.

• P-type transistors take their source from the voltage supply or
another P-type transitor.

3

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/


Complementary MOS (CMOS)

VSS(0V)

VDD

VSS(0V)

VSS(0V)
Closed
switch

Open
switc

When When

VSS(0V) VSS(0V)

VG

VD

VS

VG

VD

VS

VG

VD

VS

"On" "Off"

NMOS transistor

VG

VDD

VD

VDD

VDD

VSS(0V)
Closed
switch

Open
switch

When When

VS

VDD VDD

"Off" "On"

VG

VD

VS

VG

VD

VS

PMOS transistor

VDD = supply voltage
VSS = ground (0V)

VG = Votlage at the gate
VS = Voltage at the source
VD = Voltage at the drain

4



Logic gates with CMOS transistors

Inverter:

Out

source: Public domain, https://en.wikipedia.org/wiki/File:CMOS_Inverter.svg

2 transistors:
• 1 PMOS;
• 1 NMOS.

NAND gate:
Vdd Vdd

A B

A

B

Out

source: JustinForce, CC BY-SA 3.0, via Wikimedia Commons

4 transistors:
• 2 PMOS;
• 2 NMOS.

5

https://en.wikipedia.org/wiki/File:CMOS_Inverter.svg
https://creativecommons.org/licenses/by-sa/3.0
https://en.wikipedia.org/wiki/File:CMOS_NAND.svg


Basic digital logic components



Logic Gates

A Q

Q = A

Not

A
B

Q

Q = A · B

And

A
B

Q

Q = A+ B

Or

A
B

Q

Q = A · B

Nand

A
B

Q

Q = A+ B

Nor

A
B

Q

Q = A⊗ B

Xor

source: https://en.wikipedia.org/wiki/Logic_gate

6

https://en.wikipedia.org/wiki/Logic_gate


Multiplexers

e.g., 2-to-1 multiplexer:

A

B 1

0

S0

Z

source: https://commons.wikimedia.org/wiki/File:Multiplexer_2-to-1.svg en:User:Cburnett / CC BY-SA 3.0

S Z
0 A
1 B

7

https://commons.wikimedia.org/wiki/File:Multiplexer_2-to-1.svg


Decoders

e.g., 2-bit decoder:

Q3

2-bit
decoder

2
A

Q0
Q1
Q2

A Q0 Q1 Q2 Q3
00 1 0 0 0
01 0 1 0 0
10 0 0 1 0
11 0 0 0 1

8



Flip-flops

D Flip-Flop

D Q

Q

1 bit of storage

Implementation

Q

Clock

Data

Q

source: https://commons.wikimedia.org/wiki/File:Edge_triggered_D_flip_flop.svg, by Nolanjshettle / CC BY-SA 3.0

Implemented using ∼ 20
transistors in CMOS.

9

https://commons.wikimedia.org/wiki/File:Edge_triggered_D_flip_flop.svg


n-bit Register

D flip-flops can combined to create n-bit registers.

e.g., 4-bit register:

D0

D1

D2

D3

Q0

Q1

Q2

Q3

clk
we

D Q

Q

D Q

Q

D Q

Q

D Q

Q

D Q

Q

The we signals controls when the
data is written into each flip-flop.

10



Memory Bit Cell

Using flip-flops for storing large amount of data is costly in terms of
gates/transistors: ≈ 20 transistors / bit.

Far fewer transistors if we use two inverters coupled with a
sense/write circuit instead:

Sense/Write
Circuit

data
input/output

bb

Inverters implementation

Sense/Write
Circuit

data
input/output

VDD

bb

Transistors equivalent

This design only uses 4 transistors per bit.

Problem: at the cost of a sense/write circuit for every bit! 11



Bit Cell Column

Solution: reuse the same sense/write circuit for several cells!

Cell
bit

Sense/Write
Circuit

data
input/output

line

Bit cell

wordlines

bitlines

2-bit
decoder

2
Address

Cell
bit

Cell
bit

Cell
bit

Sense/Write
Circuit

data
input/output

line

Cell
bit

Bit cell column: 6T per cell

Problem: Each cell requires extra logic because of the decoder. 12



Cell Array

Solution: reuse the decoder for multiple rows of cells!

Sense/Write
Circuit

data
input/output

line

Cell
bit

Cell
bit

Cell
bit

Cell
bit

Sense/Write
Circuit

data
input/output

line

Cell
bit

Cell
bit

Cell
bit

Cell
bit

Sense/Write
Circuit

data
input/output

line

Cell
bit

Cell
bit

Cell
bit

Cell
bit

wordlines

bitlines

2-bit
decoder

2
Address

Cell
bit

Cell
bit

Cell
bit

Sense/Write
Circuit

data
input/output

line

Cell
bit

This is the basic implementation of Random Access Memory (RAM).
13



Random Access Memory (RAM)

Semiconductor RAM is organized as a 2-D array of cells, each storing
a single bit.

• Each row of the array stores one memory word – note! a memory
word may be different in size than a processor word!!

• Square-ish shape for the cell array are preferred to reduce
latency. Why?

Exercise: consider a 16x8 RAM with an 8-bit word size and 16 words.

• How many bits does this memory store?
• How many bits are needed for the memory address?

14



Example: 16x8 RAM

source: Copyright Carl Hamacher, Zvonko Vranesic, Safwat Zaky, Naraig Manjikian, Computer Organization and Embedded Systems, 2011.

15



Arithmetic and Logic Operations



Arithmetic and Logic Operations

Binary Integer Arithmetic (Recap)
Textbook§1.4, 1.5



Unsigned Integers

Decimal number D = dn−1dn−2 . . .d1d0 where di ∈ {0,1, . . . ,9}
Value in base 10 V(D) =

∑N−1
i=0 di × 10i

e.g., 67 = 6 ∗ 101 + 7 ∗ 100 = 67

Binary number B = bn−1bn−2 . . .b1b0 where bi ∈ {0,1}
Value in base 10 V(D) =

∑N−1
i=0 di × 2i

e.g., 0100 0011 = 1× 26 + 1× 21 + 1× 20 = 67

E.g., 6710 = 0100 00112
E.g., 1310 = 0000 11012

The range of values depends on number of bits n: V(D) ∈ [0;2n − 1].

E.g., if n = 8 bits, the maximum value is
28 − 1 = 25510 = 1111 11112.

16



Binary Addition

Decimal addition

67
+ 13

1
80

Binary addition

0100 0011
+ 0000 1101

010
1
1

1
0
1
0
1
00

Watch out for overflow!

195
+ 141

1
336

1100 0011
+ 1000 1101

1
010

1
1

1
0
1
0
1
00

336 is larger than the maximum value (255) we can represent with 8
bits. The carry-out indicates the overflow.

17



Binary Addition in Hardware

Ripple carry adder: S = A+ B

1-bit
Full

Adder

1-bit
Full

Adder

1-bit
Full

Adder

1-bit
Full

AdderC3 C2 C1 C0C4

A3 B3 A2 B2 A1 B1 A0 B0

S3 S2 S1 S0

source: https://commons.wikimedia.org/wiki/File:4-bit_ripple_carry_adder.svg en:User:Cburnett / CC BY-SA

18

https://commons.wikimedia.org/wiki/File:4-bit_ripple_carry_adder.svg


Signed Integers: Sign-and-magnitude Representation

We need to encode the sign in the representation of signed binary
numbers.

Sign-and-magnitude is the simplest approach: use the leftmost bit
(MSB) to represent the sign, and the remaining bits to represent the
magnitude (i.e., absolute value). Example for 8 bits:

MSB = 0 ⇒ positive
MSB = 1 ⇒ negative

+ 13 = 00001101
− 13 = 10001101

Problems with sign-and-magnitude:

• Two representations for zero = 0000 0000 = 1000 0000
• We need extra hardware to handle the addition of a positive
number and a negative one (we cannot simply add the numbers
together)

19



Signed Integers: 1’s-complement Representation

To get a negative value: invert each bit of the corresponding positive
representation, and vice-versa.

This representation has the advantage that signed and unsigned
arithmetic can use the same hardware.

+ 13 = 00001101
− 13 = 11110010

0001 0000 = (1610)
+ 1111 0010 = (−1310)

1 1
0
1
0
1
00 0010 = (210)

This result is off by one;
carry out, but no overflow.

20



Overflow
Overflow occurs when the result of an arithmetic operation does
not fit into the range of the n-bit representation used, e.g.,
[−2n−1,2n−1 − 1] when a bit is used to represent the sign.

If there is a carry out during unsigned arithmetic, overflow has
occurred.

0001 0000 = (1610)
+ 1111 0010 = (24210)

1 1
0
1
0
1
00 0010 = (210)

Here, the result is off by 256; the carry out (28) indicates overflow.

In signed arithmetic, overflow must be detected differently.

21



Back to 1’s-complement Representation

+ 13 = 00001101
− 13 = 11110010

0001 0000 = (1610)
+ 1111 0010 = (−1310)

1 1
0
1
0
1
00 0010 = (210)

This result is off by one;
carry out, but no overflow.

Problems:

• Still two representations for zero = 0000 0000 = 1111 1111
• Need to add 1 to the result when an operand is negative (try as
an exercise with (−2)10 + (−2)10)

• Need a way to identify overflow

22



Signed Integers: 2’s-complement Representation

For integer arithmetic, computers use 2’s-complement
representations.

To get a negative value: invert each bit of the corresponding positive
representation and add one (works in reverse as well).

+ 13 = 0000 1101
− 13 = 1111 0010+ 1

= 1111 0011

0001 0000 = (1610)
+ 1111 0011 = (−1310)

1 1
0
1
0
1
00 0011 = (310)

Correct value; however, carry
out without actual overflow
again!

Problem:

• Still need a way to identify overflow

23



Overflow in 2’s Complement Addition

Recall that overflow occurs when the answer does not fit into the
representable range of numbers.

Observations:

• With signed addition, the carry-out does not indicate overflow.
• Overflow can only happen if both numbers have the same sign.

Rule: Overflow only occurs if both summands have the same sign,
and the sum has a different sign than that of the summands.

0110 = (+610)
+ 0100 = (+410)

1010 = (+1010)

No carry out, different sign
⇒ overflow!

1110 = (−210)
+ 1001 = (−710)

1
0111 = (910)

Carry out, different sign
⇒ overflow!

24



Ranges

Integer representations, assuming n = 4 bits:
Binary Decimal Value

Sign and Magnitude 1’s Complement 2’s Complement

1000 -0 -7 -8
1001 -1 -6 -7
1010 -2 -5 -6
1011 -3 -4 -5
1100 -4 -3 -4
1101 -5 -2 -3
1110 -6 -1 -2
1111 -7 -0 -1

0000 +0 +0 +0
0001 +1 +1 +1
0010 +2 +2 +2
0011 +3 +3 +3
0100 +4 +4 +4
0101 +5 +5 +5
0110 +6 +6 +6
0111 +7 +7 +7

Range: [−7; +7] [−7; +7] [−8; +7]
[−2n−1 + 1;2n−1 − 1] [−2n−1 + 1;2n−1 − 1] [−2n−1;2n−1 − 1]

25



Subtraction

B−A = B+(−A) : form the 2’s complement inverse of A and add to B.

In hardware, invert the bits and add one using the carry in signal C0.
The signal D selects between addition and subtraction.

1-bit
Full

Adder

1-bit
Full

Adder

1-bit
Full

Adder

1-bit
Full

AdderC3 C2 C1 C0C4

A3 B3 A2 B2 A1 B1 A0 B0

S3 S2 S1 S0

1 0 1 0 1 0 1 0

D

source: https://commons.wikimedia.org/wiki/File:4-bit_ripple_carry_adder-subtracter.svg en:User:Cburnett / CC BY-SA

26

https://commons.wikimedia.org/wiki/File:4-bit_ripple_carry_adder-subtracter.svg


Sign Extension

Sometimes you will want to convert an n-bit number to an m-bit
number, where m > n.

The rule for 2’s complement numbers is to replicate (extend) the sign
bit.

4-bit value 8-bit value
0010 0000 0010 = (210)
1110 1111 1110 = (−210)

Sign-extension is important if (when) we store numbers in memory
using fewer bits than our processor uses for its operations.
E.g., we may use 8-bit numbers for color or sound, but do math on
such numbers using a 32-bit adder.

27



Arithmetic and Logic Operations

Logical Operations



Bitwise boolean operators

Besides arithmetic operations such as a adding or subtracting, a
computer must be able to perform logical operations such as AND,
OR, NOR, …

Since a processor typically process data at the granularity of a word
(e.g., 32 bits), the logical operator will be applied to all the bits of
their input independently.

For instance, for a 4-bit machine:

0011
AND 1010

0010

0011
OR 1010

1011

28



Hardware implementation of a 4-bit wide AND:

C0

C1

C2

C3

A0

A1

A2

A3

B0

B1

B2

B3

29



Shifting operators

Shift change the positions of bits, moving them left or right.

Computer typically perform three kind of shifting operations:

• Logical Shift Left (LSL) �
• Logical Shift Right (LSR) ≫

• Arithmetic Shift Right (ASR) �

Logical vs Arithmetic shift:

• Logical ⇒ pad with 0s
• Arithmetic ⇒ extend sign bit

Example: 1100 � 0010 = ?

These operators are useful to implement multiplication in software:

• Left shift by one = multiplication by 2;
• Right shift by one = division by 2.

You will see more about this in the labs/tutorials.
30



Hardware implementation of a 4-bit Barrel Shifter for LSL:

0
0

0

A3

A2

A1

A0

B3

B2

B1

B0

sel0
sel1

sel0 shifts left by 1 if 1
sel1 shifts left by 2 if 1

source: By Aaron Logan, from http://www.lightmatter.net/gallery/albums.php, CC-BY

To support larger bit-width, simply add extra stages to shift by 4, 8, …

Question:

• How do you shift left by 3?
• How would you update this circuit to shift right?
• What about arithmetic shift?

31

http://www.lightmatter.net/gallery/albums.php


Arithmetic and Logic Operations

ALU



Arithmetic and Logic Unit (ALU)

Computing is (mostly) about performing arithmetic and boolean
operations.

At the core of any computer lies the ALU. It performs integer
operations such as adding integers, and bit-wise logical operations
such as OR on a word (e.g., 32 bits).

The ALU inputs are:
• Two values, A and B;
• A function determining the operation to
perform (e.g., ADD, OR, LSL).

The output of the ALU are:
• The result Z of the operation;
• A set of flags that indicate, for instance, if
an overflow has occurred.

ALU

A

fun flags

B

Z

32



ALU Implementation

The ALU can be simply implemented by multiplexing the ADD/SUB
unit seen earlier, the logical bitwise operator and the Barrel shifter.

A

B
R

Add/Sub

AND

Barrel
Shifter

...

fun

(flags omitted)

The fun select signal of the
multiplexer controls which operation
is performed by the ALU.

33



Programming the ALU

An ALU is in fact a programmable piece of hardware since its
function can be decided at runtime.

For instance, an ALU could be designed to perform the following
operations controlled by the fun signal:

Function fun Description Output

ADD 000 signed integer addition A+B
SUB 001 signed integer subtraction A-B
AND 010 bitwise AND A and B
OR 011 bitwise OR A or B
NOR 100 bitwise NOR A nor B
LSL 101 logical shift left A � B[3-0]
LSR 110 logical shift right A ≫ B[3-0]
ASR 111 arithmetic shift right A � B[3-0]

ALU

A

fun flags

B

Z 34



ALU Flags

The ALU also outputs some flags that specifies some properties of
the result. The typical flags found on most ALUs are:

• N: Negative
• Z: Zero
• C: Carry generated (when adding/subtracting)
• O: Overflow generated (when adding/subtracting)

35



Example

Let us use the ALU to perform a bit-wise AND between 1010 and
1101:

ALU

1010

010 10xx

1101

1000

A

fun flags (N,Z,C,V)

B

Z

What about a subtraction?

How I can tell if A smaller than B?

36



So far we have a piece of hardware that we can configure to do any
of the arithmetic or logical operations discussed on two values.

But what if we want to perform x+y-z?

Answer:

• Perform x+y;
• Store the temporay result tmp somewhere;
• Perform tmp-z;

We need to have a storage and control our ALU sequentially.

We are going to use a sequential circuit.

37



Control and Datapath



Control + Datapath

We separate the circuit in two parts:

• Control: typically a Finite State Machine (FSM);
• Datapath: registers, ALU and other functional units.

Example for x+ y− z:

ALU

A

fun
op

mxB

mxA

flags

B

R

Control

Datapath

Reg (tmp)

Reg (x) Reg (y) Reg (z)

1 0 1 0

FSM for x+ y− z:

ADD
01000

SUB
10001

Output control signals: mxAmxBop

This machine executes one operation per cycle.

38



Example for x+ y− z:

ALU

A

fun
op

mxB

mxA

flags

B

R

Control

Datapath

Reg (tmp)

Reg (x) Reg (y) Reg (z)

1 0 1 0

FSM for x+ y− z:

ADD
01000

SUB
10001

Output control signals: mxAmxBop

Problem:

• What if we have more than one temporary value?
e.g., (x � z+ y � z)

• What if we have more than three input values?
e.g., (x � z+ y � w)

⇒ Need a more general mechanism to store values.

39



Register File



Register File

Constraint: we have to have a fixed number of registers in the
datapath — it is hard-ware afterall.

However, we can design our hardware to give us the flexibility to use
any register as input, temporary, or output values.

Main idea: group a set of registers together and use one (or many)
mutiplexer(s) to select which register(s) to read from, and a decoder
to select which register to write to.

This is called a Register File.

40



Register File Implementation

Implementation of an 8 × 16-bit register file with two read ports and
one write port:

Reg. 0
we

in out

Reg. 1
we

in out

Reg. 7
we

in out

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

A

B

C

3-bit
decoder

addrC addrB addrAwe

3

3 3

16

16

16

A

B

0

1

7

...

41



Datapath with Register File

Now we can make the ALU read its input and write its output into any
register contained in the register file.

Datapath

C

addrC addrB

addrA

we

A

B

Register
File A

LU

fun

42



Control + Datapath with Register File

The control logic (FSM) will determine the source and destination by
setting the addrA,addrB,and addrC signals accordingly.

Datapath

C

addrC addrB

addrA

we

A

B

Register
File A

LU

fun

Control

RF_addrA
RF_addrB
RF_addrC

RF_we
ALU_fun

43



Exercise: draw FSM to perform x+ y− z. Assume x, y and z are
respectively in R0, R1 and R2 of the register file and the result
should be saved in R3.

What about: (x � 2+ y � 3) ? What is the problem?

44



Dealing With Constants

Constant are also known as immediate value.

We can modify the datapath and add a multiplexer in front of one of
the inputs of the ALU.

Datapath

C

addrC addrB

addrA

we

A

B

Register
File A

LU

fun

immValue

0
1

IMux

Where is the second IMux input coming from?

45



Dealing With Constants

The control logic will produce the immediate value. It is encoded in
one of the states of the FSM.

Datapath

C

addrC addrB

addrA

we

A

B

Register
File A

LU

fun

immValue

0
1

IMux

Control

RF_addrA
RF_addrB
RF_addrC

RF_we
ALU_fun
IMux_sel

ImmValue

46



Exercise: draw the FSM for (x � 2+ y � 3) and the corresponding
output signals that control the datapath. Assume x and y are stored
in R0 and R1 respectively and the result should be saved in R7.

47



Main Memory



Interfacing with main memory

So far, we have only looked at ALU operations, but the processor also
needs to access the main memory.

In a Load/Store architecture, the processor has two dedicated
classes of operations to communicate with memory:

• Load: Reads a value from memory at a given adress and saves it
into a register.

• Store: Writes the value from a register at a given address in
memory.

48



Full Datapath

C

addrC addrB

addrA

we

A

B

Register
File A

LU

RA

RB

RZ RW

RD

0
1

IMux

0
1

DataAddr
Processor-Memory

Interface

MMux

ALUflags

To enable Load/Store instruction, we connect our datapath to the
processor memory-interface.

• The Addr signal, coming out of the ALU, contains the address to
load/store data from/to the memory.

• The Data signal, is the data coming from / going to the memory. 49



Notice how we have also added extra registers in the datapath:
RA,RB,RZ,RD, and RW.

These allows us to “separate” the different steps that takes place in
the machine:

• Once the register file has been read, RA and RB are updated.
• Once the ALU has been used, RZ and RD are updated.
• Once the memory has performed its operation, if any (e.g.,
Load), RW is updated.

• Finally, at the very end the result of RW is written into the
register file if needed.

These four steps are called: Decode, Execute, Memory, Writeback.

• We now need more than one clock cycle to execute an
instruction;

• But this allows us to pipeline the datapath. More on this later in
the course.

50



Datapath + Control

C

addrC addrB

addrA

we

A

B

Register
File A

LU

RA

RB

RZ RW

RD

0
1

IMux

0
1

DataAddr
Processor-Memory

Interface

MMux

ALUflags

0
1

Memread

Memwrite

Memcomplete

MMuxsel RWwe

ImmVal
IMuxsel

addrA

addrB

addrC
ALUfun

RAwe

RBwe

RZwe

RDwe

RFwe

blue = data-path related signals, red = state related signals.

Memory related control signals:

• Memread: load data from memory;
• Memwrite: store data to memory;
• Memcomplete: memory function has completed (data has arrived). 51



Example FSM for Add, R3, R4, R5 (R3 = R4+R5)

Decode Execute Memory Writeback

Decode Execute Memory Write-back

addrA 4 x x x
addrB 5 x x x
addrC x x x 5
ImmVal x x x x
IMuxsel x 0 x x
ALUfun x ADD x x
MMuxsel x x 0 x

RAwe 1 0 0 0
RBwe 1 0 0 0
RZwe 0 1 0 0
RDwe 0 1 0 0
Memread 0 0 0 0
Memwrite 0 0 0 0
RWwe 0 0 1 0
RFwe 0 0 0 1

52



Example FSM for Load, R2, R5 (R2 = MEM[R5])

Decode Execute Memory Writeback

Decode Execute Memory Write-back

addrA 5 x x x
addrB x x x x
addrC x x x 2
ImmVal x 0 x x
IMuxsel x 1 x x
ALUfun x ADD x x
MMuxsel x x 1 x

RAwe 1 0 0 0
RBwe 1 0 0 0
RZwe 0 1 0 0
RDwe 0 1 0 0
Memread 0 0 1 0
Memwrite 0 0 0 0
RWwe 0 0 1 0
RFwe 0 0 0 1

53



What if the memory takes more than once clock cycle to send the
data back?

We modify our FSM by using the Memcomplete signal to only move to
the Writeback state once data has been received:

Decode Execute Memory Writeback

Mr = 1 · Mc = 0

Mr = 0 + Mc = 1

Mr = Memread , Mc = Memcomplete .

54



One last word on memory operations.

What values of IMUXsel and ImmVal would you choose to
implement:

Store, R2, R5+4 (MEM[R5+4] = R2) ?

Producing the address through the ALU allows the machine to
perform two operations at once: calculate an address and access
memory.

55



Instructions



What if we want to change the computation?

Every time we want our machine to compute something different, we
need to change the output signals in each state of the FSM.

Problem: the output of the FSM are hard-coded using combinational
logic.

What we want: ability to change the output of the FSM at runtime,
make it soft.

Solution: “encode” each state’s output signals in a memory.

56



Instructions

An instruction consists of the operations the machine should
perform together with the data source and destination (i.e., register
number or immediate value).

Instructions are stored in a random access memory (RAM).

A program counter (PC) is introduced to keep track of which
instruction is executing. Its value is the address in memory of the
instruction the machine should execute.

An instruction register (IR) is introduced to hold the currently
executing instruction. The output of the IR will set the datapath
related control signals.

57



Control for instruction fetching

Assuming a 32-bit (4 bytes) processor:

PC
we

...

instruction 1

instruction 3

instruction 2

4 byte

4 byte

4 byte

addrC

addrB

addrB

ALUfun

we
IR

IMuxsel

...

+4

Instruction
memory

The datapath related control signals now come out of the IR
(Instruction Register) instead of coming out of the FSM. This allows
us to “customize” the path the data takes based on data (instruction)
stored in the RAM.

58



Instruction encoding

With a 32-bit processor, one possible encoding of an instruction and
the corresponding datapath related control signals could be:

addrA

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OPcode I Rn Rd Operand2

IR

IMuxsel

addrC addrB

ImmVal

sign extension

12 bits

32 bits

ALUfun

MMuxsel

• OPcode specifies the type of operations, e.g., ADD, Load, Store;
• I specifies whether Operand2 is a register or immediate value;
• If we have an immediate value, we must sign extend it.

59



Exercise: What is the content of the instruction memory for the
following sequence of instructions ?

ADD R2, R3, R4
ADD R2, R3, -3
Load R2, R3

60



Finite State Machine with Fetching

We now introduce an extra state in our FSM to specifically deal with
fetching the instruction from memory and can finally “close” the
loop.

Fetch Decode Execute Memory Writeback

Mr = 1 · Mc = 0

Mr = 0 + Mc = 1

These are the classical five stages of a RISC processor that repeated
over and over:
Fetch, Decode, Execute, Memory and Writeback.

61



Control Flow



What if we want to change the behaviour of our computation based
on runtime values?

For instance, consider the task of implementing a max function:

max(a,b) =
{
a if a ≥ b
b otherwise

Assume the original value a and b are stored in R0 and R1
respectively, and that the result should be returned in R2.

Depending on the case taken, the processor needs to execute one of
these two instructions (but not both!) to “assign” a or b to R2 :

• ADD R2, R0, 0
• ADD R2, R1, 0

62



One way to achieve this is to have both instructions in the instruction
memory and skip one or the other depending on the case.

This means we need the ability to change the PC to an arbitrary
position conditionally on the result of comparing two values.

This operation is called a branch.

63



Branch instruction

A branch instruction sets the ALU to perform a subtract and uses the
condition flags from the output of the ALU to decide whether to
update the PC value or not.

BGE Rd, Rn, RelativeAddress = Branch if Rd ≥ Rn
where RelativeAddress is an immediate value.

Other variants: BEQ, BNE, BLT, BGT, BGE, BLE

If need to unconditionally branch, simply use twice the same register
with BEQ. e.g., BEQ R0, R0, relativeAddress. The unconditional branch
is often just shortened as B.

64



Control

The control logic that updates the PC now becomes:

PC
we

...

instruction 1

instruction 3

instruction 2

4 byte

4 byte

4 byte

addrC

addrB

addrB

ALUfun

we
IR

ImmVal

...

+

Instruction
memory

0
1ImmVal

(sign extended)

branch_taken

4

branch_taken indicates a branch is taken. This happens when:

• A branch instruction executes;
• and the condition is satisfied.

65



ALU flags & Conditions

Condition Bit pattern Description ALU flags

EQ 000 equal Z==1
NE 001 not equal Z==0
LT 010 signed less than N!=V
LE 011 signed less or equal (Z==1) or (N!=V)
GT 100 signed greater than (Z==0) and (N==V)
GE 101 signed greater or equal N==V

Remember, the ALU is set to perform a subtraction.

For instance, checking if A ≥ B involves performing A− B:

• If no overflow, A ≥ B if N = 0;
• If overflow, A ≥ B if N = 1.

e.g., with 4 bits: A = 6,B = −7

A− B = 6− (−7) = 6+ 7 = 01102 + 01112 = 11012

overflow and negative! ⇒A ≥ B.

66



Branch Instruction Encoding

addrA

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMuxsel

addrB

ImmVal

sign extension

12 bits

32 bits

ALUfun

MMuxsel

OPcode 0 Rn Rm Operand2

IR

0 0 1Cond 0

Observe how:

• The ALU is set to perform a subtraction (bits 23-21);
• Bits 31-29 encode the condition (see table from previous slide);
• IMUXsel is always zero since the Operand2 is used for the PC
relative address;

• MMUXsel is 0 since this is not a memory operation;
• Bits 15-12 are now used for addrB.

67



Finite State Machine with Branching

Our FSM is now updated as follows:

Fetch Decode Execute Memory

branch_taken

Writeback

Mr = 1 · Mc = 0

Mr = 0 + Mc = 1
branch_taken

branch_taken = BranchInstruction · ConditionTrue

ConditionTrue is true when the output flags of the ALU matches
with the condition expected.

68



Use of branch instruction

Back to our example:

max(a,b) =
{
a if a ≥ b
b otherwise

Assuming a,b in R0,R1, and result produced in R2. We can use the
branch instruction to implement the max function:

BLT R0, R1, +8
ADD R2, R0, 0
B +4
ADD R2, R1, 0

Why +8,+4?

69



Final words: Instruction versus Data Memory

In this lecture we have seen that instructions and data use different
memories. This is called a Harvard architecture.

It is also possible to design the CPU where both instructions and data
lives in the same memory, this is called a von Neumann architecture.

Most modern computers use a single memory for everything, as far
the programmer is concerned. Internally, they use two separate
memories, known as caches (more on this later in the course).

70



Conclusion

This lecture has:

• Reviewed the basic digital logic components and;
• Presented the datapath and control of a simple 5-stage RISC
machine;

The next lecture will:

• Present the instructions supported by a real processor (ARMv7);
• Show how to write real assembly programs in much more details.

71


	Transistors
	Basic digital logic components
	Arithmetic and Logic Operations
	Binary Integer Arithmetic (Recap) Textbook§1.4, 1.5
	Logical Operations
	ALU

	Control and Datapath
	Register File
	Main Memory
	Instructions
	Control Flow

