ECSE 324 Final
Winter 2022
ECSE 324 Winter 2022 Final

Part A: Choose Wisely (34 pts)

2pts each unless otherwise noted. These questions are a mix of matching (MA), multiple choice (MC), multiple select (MS), short answer (SA), and long answer (WR). Select or answer “I don’t know” for 1/4 credit.

ISA

1. Assume a 32-bit little endian RISC computer, and memory contents defined in the table below. If
· R0 = 0x0000 0008
· R1 = 0x0000 0002
· R2 = 0x0000 0010
What is in R2 after: LDRSH R2, [R0], R1? Give your answer in hexadecimal, e.g., 0x0123 4567. (SA)

0xFFFF 9178 – 1 pt for current address and bytes

	Addr
	Data
	
	Addr
	Data

	0x00
	0xD1
	
	0x08
	0x78

	0x01
	0x4B
	
	0x09
	0x91

	0x02
	0x45
	
	0x0A
	0x03

	0x03
	0xC4
	
	0x0B
	0x70

	0x04
	0x90
	
	0x0C
	0xB3

	0x05
	0x12
	
	0x0D
	0xDA

	0x06
	0x4F
	
	0x0E
	0x7F

	0x07
	0xEE
	
	0x0F
	0xE6

2. Which of following instruction sequences are equivalent to: POP {V1, LR}? (MS)
· LDMIA R13!, {R14, R4}
· ADD SP, SP, #-4
LDMIB SP, {V1, LR}
ADD SP, SP, #12
· LDR V1, [SP], #4
LDR LR, [SP], #4
· LDR V1, [SP]
LDR LR, [SP, #4]

3. How many times is memory accessed during the following code sequence? Assume that A1 contains 0xBEEF CAFE. (SA)
TST A1, #2
LDREQ V1, [A2], #4
LDRNE V2, [A2], #4
LDRLE V3, [A2], #4
LDRGE V4, [A2], #4

7 – 1 pt for 6, 8, 9

Input/Output

4. Which of the following are true of (i) subroutines, (ii) interrupt service routines, (iii) both, or (iv) neither? (MA)
· It must push LR if it calls a subroutine. (iii)
· PC is pushed on the stack before it begins to execute. (ii)
· It is called with the BL instruction. (i)
· Use of LDM is prohibited. (iv)

5. Which of the following are most true of (i) serial communication, (ii) parallel communication, true of (iii) both, or true of (iv) neither? (MA)
· Relatively less vulnerable to transceiver failure (i)
· Relatively slower communication, due to e.g., electrical interference (ii)
· Relatively less complex protocols (ii)
· Requires a clock (iv)

Memory

6. Assume a 32-bit RISC CPU's 256 MB, byte-addressable, main memory is implemented using four (4) byte-addressable 64Mx8 asynchronous DRAM chips. I.e., the four (4) chips are interfaced and interconnected in such a way that only one is active for any given memory access. Each chip is structured such that their DRAM array rows are 32K bits wide. How many bits wide must the address port on the individual DRAM chips be? (MC)
a. 10
b. 12
c. 14
d. 16
e. None of the above (13)

7. Assume you have a 32 KB cache consisting of 64 B cache blocks. How many comparators are needed if the cache is (a) 4-way set associative, or (b) fully associative? (SA)
a. 4
b. 512

8. Assume you have a 32 KB cache consisting of 64 B cache blocks, and 128 MB of main memory. If the cache is 8-way set associative, how many blocks in memory map to each set in cache? (MC)
a. 214
b. 215
c. 216
d. 217
e. None of the above

9. Select the steps that need to be taken in a direct-mapped write-back cache in the following situation. Memory block A (unmodified) is in set N. A store instruction accesses memory block B, not in cache, which also maps to set N.
· Copy block A from cache to memory
· Copy block B from memory to cache
· Update block B in cache
· Update block B in memory

10. The translation-lookaside-buffer (TLB) used to support page number translation in the memory management unit is one of the few places we find fully- associative memories in modern computer architecture. Why? (MS)
· FA caches are fast, and virtual address translation must be as fast as possible.
· FA caches have low miss rates, and virtual address translation must miss as little as possible.
· FA caches are slow, but this is okay because virtual address translation takes a long time, too.
· FA caches have high miss rates, but this is okay because page table lookup is fast.

11. Assume a 32-bit computer system with 1 GB of RAM. If pages are 4 KB each, and each page table entry requires 16 bits to track the status of the entry (valid, dirty, accessed, permissions, etc), how much memory is required for a complete page table? Give your answer in KB.

5120 – 1 pt for 1280, 4352, 4456, or 5243

Processor

12. 4pts Consider the following data path. Which of the following ARMv7 instructions would be supported? (MS)

[image: Diagram, engineering drawing

Description automatically generated]

· ADD R2, R3, #8
· MLA R1, R2, R3, R4
· TEQ A3, #0x12
· PUSH {V1, V2}
· PUSH {LR}
· POP {A1}
· LDR R1, [R2, R3]
· STR V2, [A1, A2]

13. Consider once again the example data path above. What is the contents of RB after the instruction ADD R1, R2, #4 is executed? Assume that R1 = 0xBEEF FEED and R2 = 0xFACE CAFE. Justify your answer for credit. (WR)

RB will contain 0xBEEF FEED. Address B uses the same bits in the instruction that are used for Address C in instructions that use the immediate-operand format.

14. The following design strategies can be used to reduce pipeline hazards. Match the strategy to the type of hazard that it best addresses: (i) Control hazard, (ii) Data hazard, (iii) Structural hazard due to contention for memory. (MA)
a. Using conditional execution (i)
b. Implementing split L1 caches (iii)
c. Implementing forwarding (ii)
d. Re-ordering instructions during assembly (ii)

Arithmetic

15. There are approximately 2n 32-bit floating point numbers between 1 and 4 when using the IEEE 754 standard. What is n?

24 – 1 pt for 23 or 25

16. The IEEE 754 standard also includes a specification for 16-bit half precision floating-point numbers. This representation includes a sign bit, five bits of exponent, and 10 bits of mantissa. Like FP32, this representation is normalized, and uses a biased exponent; the bias in this case is 15. What is -2.375 in this representation? Give your answer in hexadecimal, e.g., 0xa1b2.

0xC0C0

17.

Part B: Some assembly required (16 pts)

Complete the following assembly to implement a program that reads ASCII characters pressed on a keyboard and executes the JUMP subroutine every time the spacebar (ASCII code 32) is pressed.

The keyboard operates using interrupts. The SERVICE_IRQ ISR is executed first when any interrupt occurs; there are no other IRQ besides _reset in this simplified implementation. SERVICE_IRQ calls KBD_ISR when the keyboard needs to be serviced. Assume that SERVICE_IRQ and JUMP are implemented elsewhere.

The keys pressed on the keyboard are stored in a circular buffer that can hold eight (8) characters (bytes). Characters are enqueued (stored at the tail of the queue) with a call to CENQ8, and dequeued (loaded from the head of the queue) with a call to CDEQ8. These functions are provided for you.

CENQ8:
	push	{v1}
	ldrb	v1, [a2]		// load the tail index
	strb	a3, [a1, v1]		// store the character at the tail
	
	add	v1, v1, #1		// increment the tail
	cmp	v1, #8			// check if we need to wrap
	blt	CENQ8_ret		// return if 7 or less
	mov	v1, #0			// reset tail index
	
CENQ8_ret:
	strb	v1, [a2]		// store new tail index value
	pop	{v1}
	bx	lr 			// return

CDEQ8:
	push	{v1}
	ldrb	v1, [a2]		// load the head index
	ldrb	a1, [a1, v1]		// load the character at the head
	
	add	v1, v1, #1		// increment the head
	cmp	v1, #8			// check if we need to wrap
	blt	CDEQ8_ret		// return if 7 or less
	mov	v1, #0			// reset head index

CDEQ8_ret:
	strb	v1, [a2]		// store new head index value
	pop	{v1}
	bx	lr

Complete the code that follows such that KBD_ISR enqueues characters in the buffer, _start dequeues characters in the buffer, compares them with the appropriate ASCII code, and calls JUMP as needed.

.section .vectors, "ax"
B _start
B SERVICE_IRQ			// 1 1pt

.text
.global _start
.equ dkbd, 0x4000
.equ ksp, 32			// 2 1pt

cbuf: .space 8 // circular buffer
cbufh: .byte 0 // head index
cbuft: .byte 0 // tail index
.space 2

KBD_ISR:
	push	{lr}
ldr	a1, =cbuf	// 3 1pt
	ldr	a2, =cbuft	// 4 1pt
	ldr	a3, =dkbd	// 5 1pt
	ldrb	a3, [a3]
	bl	CENQ8
	pop	{lr}
	bx	lr

_start:
	ldr	a1, =cbuf
	ldr	a2, =cbufh
	ldr	a3, =cbuft
	
wait:
	ldrb	v1, [a2] 	// 6 1pt
	ldrb	v2, [a3]
	cmp	v1, v2		// 7 2pt
	beq	wait		// 8 2pt
	
	bl	CDEQ8		// 9 1pt
	
	cmp	a1, #ksp
	bleq	JUMP		// 10 2pts
	
	ldr	a1, =cbuf	// 11 2pts
	b	wait		// 12 1pt

Part C: There are exactly two ways to cache a block (10 pts)

Assume a 16-bit address space and byte-addressable, big-endian, main memory. The table below illustrates the state of a 16-set 2-way set associative cache. Each set consists of two blocks of 8B (with the least significant byte on the right). The state (V for Valid, and Tag) of each block in each set is indicated.

	Set
	V
	Tag
	Data
	V
	Tag
	Data

	
	
	
	7 6 5 4 3 2 1 0
	
	
	7 6 5 4 3 2 1 0

	0
	0
	134
	83 ab 57 88 31 e7 a0 5e
	1
	05f
	8f 4c e4 df 63 77 c6 5e

	1
	1
	01f
	d2 ce aa 7c 82 23 d7 d7
	1
	1e6
	1f 64 76 c7 a3 dc 19 78

	2
	1
	0d3
	e6 65 8d 3b e3 53 f8 d7
	0
	09a
	f8 40 3d f2 80 42 0a f0

	3
	1
	02d
	0c b8 00 e4 d7 60 58 b0
	0
	087
	71 4e 10 f7 b9 5f 58 c7

	4
	0
	167
	5f 91 85 64 de 45 ca e8
	0
	034
	84 b7 c0 41 6e 5c d4 64

	5
	1
	1d3
	be 8a 35 b0 9b 75 70 48
	1
	06c
	08 06 a0 bd 13 c6 69 a0

	6
	1
	022
	2a a4 7b bd 72 a1 f7 51
	1
	019
	19 3b 55 fc d8 52 30 35

	7
	1
	000
	30 4b 12 c0 2f 51 8d 3a
	0
	035
	8e 57 c7 8b be 44 93 a2

	8
	0
	1ab
	df cd 5a f7 7f 4b cd b3
	1
	100
	58 a5 4d 46 f5 30 91 e6

	9
	0
	112
	ee f9 86 7d 24 dd 98 7c
	1
	171
	8c a7 de ec bc a5 06 cb

	a
	1
	0e3
	2c 5b af c6 92 09 cf ca
	0
	0f6
	a9 e5 f2 87 d2 91 9b 1d

	b
	0
	0df
	e8 af 5b 2e 4a 77 e0 0c
	0
	024
	1d d0 ce 0b b8 ac a6 9c

	c
	0
	0ee
	9d b7 11 e9 68 7c a3 4f
	0
	1c6
	91 17 2f b3 3d 85 92 33

	d
	1
	01d
	cd 8b 2f 5d c8 de 16 90
	0
	0aa
	d2 4e e3 20 12 83 f2 62

	e
	1
	0a0
	d5 d0 a3 4b 9e 1a d4 55
	1
	1f0
	a3 9b 1d 98 26 38 a5 e0

	f
	0
	155
	a5 65 2b 9f 55 20 72 e6
	1
	1be
	25 23 07 e1 bf 7f 72 1e

2 pts each unless otherwise noted.

a. Does an access to address 0x5074 hit or miss? (Hit/Miss)
b. Does an access to address 0x4d10 hit or miss? (Hit/Miss)
c. What 4B word is returned by a load from 0xB8C8? (SA) 0xCB06 A5BC
d. 4pts Calculate the hit or miss status for each following sequence of memory accesses. Give your answer in decimal, e.g., 0.8. (WR)

0x169C, 0x169E, 0x16A0, 0x16A2, 0x16A4, 0xDB9A, 0xDB9C, 0x169C

The first two accesses hit in set 3 (2/2). The next access, to set 4, misses (2/3). One of the two invalid blocks is replaced. The following two, however, are to the same block, and hit (4/5). The access to 0xDB9A misses, and the invalid block in set 3 is replaced; it is followed by a hit (5/7). The final access to a previously accessed block hits because this block was not replaced (6/8 = 0.75).

Part D: Timing is Everything (12 pts)

Consider the following 5-stage RISC CPU datapath.

[image:]

Use the following sequence of assembly instructions to answer the following questions.

ADD R2, R2, #4
LDR R1, [R0, #8]
STR R1, [R2]

a. 2pts How many cycles does this sequence of instructions take to execute without pipelining? Assume that every memory access completes in a single cycle. (SA)

15

5 cycles for each instruction; no overlapped execution.

b. 4pts When the ADD instruction is executing, what are the values of the following control signals? Give your answers in binary, e.g., 0b0110. (SA)
a. B_Select (0b1)
b. Address A (0b00010)
c. C_Select (0b00)
d. Address C (0b00010)

c. 3pts How many cycles does this sequence of instructions require with pipelining, but without forwarding? Assume that every memory access completes in a single cycle, but that only a single memory access may be performed in each cycle. Give priority to instructions in the memory stage. Hazards are detected in the decode stage. (SA)

10

	1 2 3 4 5 6 7 8 9 0
ADD	F D E M W
LDR	 F D E M W
STR	 F D D D D E M W

d. 3pts How many cycles does this sequence of instructions require with pipelining and forwarding? Assume that every memory access completes in a single cycle, but that only a single memory access may be performed in each cycle. Give priority to instructions in the memory stage. Hazards are detected in the decode stage. Forwarding is available from Memory to Execute, Write-back to Memory, and Write-back to Execute. (WR)

7

1 2 3 4 5 6 7
ADD	F D E M W
LDR	 F D E M W
STR	 F D E M W

Two paths are needed: Write-back to Execute (ADD->STR) to resolve the dependency on R2 for address calculation, and Write-back to Memory
(LDR->STR) to resolve the dependency on R1 for the memory access itself.

Part Z: Bonus!

a. 1pt Write a haiku or other short poem about ECSE 324, Computer Organization. (WR)

b. 1pt Do you grant Professor Meyer permission to share your poem (at his discretion) on Twitter @bretthmeyer? (Yes/No)

1
image1.png

