
ECSE324 : Computer Organization
Memory
Chapter 8

Christophe Dubach
Fall 2023

Revision history:

Warren Gross – 2017

Christophe Dubach – W2020, F2020, F2021, F2022, F2023

Brett H. Meyer – W2021, W2022, W2023

Some material from Hamacher, Vranesic, Zaky, and Manjikian, Computer Organization and Embedded Systems, 6 th ed, 2012, McGraw Hill,

and “Introduction to the ARM Processor using Altera Toolchain.”

Timestamp: 2023/11/13 09:52:00

1

Disclaimer

It is possible (and even likely) that I will (sometimes) make mistakes
and give incorrect information during the live lectures. If you have
any doubts, please check the textbook, or ask for clarification online.

2

Introduction

What is Memory? What is Storage?

3

What is Memory? What is Storage?

4

What is Memory? What is Storage?

5

What is Memory? What is Storage?

What is the difference between memory and storage? How do they
interact?

source: www.ifixit.com

iPad Air LTE board

Elpida 1 GB LPDDR3 SDRAM memory: volatile (temporary) space for
data that loses its contents when powered off; addressable

Toshiba 16 GB NAND Flash storage: non-volatile (permanent) space
for data; only accessible through the OS

What are the different technologies used to implement memory? 6

https://www.ifixit.com/Teardown/iPad+Air+LTE+Teardown/18907

Memory Technology

To the Processor, the World is Memory

7

Random Access Memory (RAM)

There are two key metrics (amongst others) used to describe
memory:

• Memory access time: the time from initiation to completion of a
word or byte transfer

• Memory cycle time: the minimum time between initiation of
successive transfers

Random access memory (RAM) means that access time is
independent of the accessed location.

8

Memory Technology

Semiconductor RAM Memories
Textbook§8.1, 8.2

16x8 RAM

9

1024x1 RAM

10

Static RAM

Static RAM (SRAM) is made out of CMOS transistors.
Gate

Source Drain

Body

p

Gate Oxide
n n

source: VectorVoyagerPNG version: user:rogerb, CC BY-SA 3.0, via Wikimedia Commons

n-type

Gate
Source Drain

Body

n

Gate Oxide
p p

source: VectorVoyagerPNG version: user:rogerb, CC BY-SA 3.0, via Wikimedia Commons

p-type

• SRAM is volatile: it retains state as long as power is applied
• SRAM is fast, but expensive: access time is typically a few ns, but
each bit requires six transistors

• SRAMs are typically no larger than a few a Mbit
• Today, SRAMs often∗ implement on-chip “cache” or
“scratch-pad” memories, but not main memory

∗ Except, of course, when main memory is small.

11

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/

Static RAM

Static RAM (SRAM) is made out of CMOS transistors.
Gate

Source Drain

Body

p

Gate Oxide
n n

source: VectorVoyagerPNG version: user:rogerb, CC BY-SA 3.0, via Wikimedia Commons

n-type

Gate
Source Drain

Body

n

Gate Oxide
p p

source: VectorVoyagerPNG version: user:rogerb, CC BY-SA 3.0, via Wikimedia Commons

p-type

• SRAM is volatile: it retains state as long as power is applied
• SRAM is fast, but expensive: access time is typically a few ns, but
each bit requires six transistors

• SRAMs are typically no larger than a few a Mbit
• Today, SRAMs often∗ implement on-chip “cache” or
“scratch-pad” memories, but not main memory

∗ Except, of course, when main memory is small.

11

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/

6T SRAM Bit Cell

An SRAM cell is storing a ‘1’ when X is VDD.

12

6T SRAM Bit Cell

Transistors must be carefully sized for read stability and writeability.

13

Dynamic RAM

Dynamic RAM (DRAM) is also volatile, but: without refreshing, will
lose state even when powered.

SRAM is self-reinforcing: cross-coupled inverters hold state when
powered. DRAM is not: a single capacitor leaks its contents within
10s of ms; DRAM must be read periodically (refreshed) to preserve its
state.

• DRAM is slower than SRAM, but cheaper: the DRAM cell is
simpler, and DRAM is much denser than SRAM

• DRAM arrays can be quite large, up to Gbits
• DRAM is often used to implement off-chip main memory

14

DRAM Bit Cell

A DRAM cell is storing a ‘1’ when the voltage across C is VDD∗. The
charge in C leaks through T even when T is off.

∗ In practice, voltages less than VDD are recognized as ‘1’, too.

15

DRAM Bit Cell

A DRAM cell is storing a ‘1’ when the voltage across C is VDD∗. The
charge in C leaks through T even when T is off.

∗ In practice, voltages less than VDD are recognized as ‘1’, too.
15

Reading DRAM

Because DRAM is built for density, out of the smallest circuit
elements possible, accesses are optimized for speed where possible.

• When read, a sense amplifier (sense amp) connected to the bit
line detects if the charge in the capacitor is above a threshold

• If above threshold, the sense amp drives the bit line to VDD (‘1’),
recharging the capacitor.

• If below threshold, the sense amp pulls the bit line to GND (‘0’),
discharging the capacitor.

Reading a DRAM cell refreshes its contents. Note that an entire row
is read and refreshed at the same time.

To refresh the entire DRAM, each row must be periodically read.

16

Refresh Overhead

Assume that each row needs to be refreshed every 64 ms, that the
minimum time between two row accesses is 50 ns, and that all rows
are refreshed in 8192 cycles.

Read/write operations have to be delayed until refresh is finished.
What is the refresh overhead?

17

256 Mb Asynchronous DRAM (32M x 8)

The 25-bit address is broken into 14 bits for row select, 11 for column.

• First, A24−11 is driven, and RAS asserted, reading a row.
• Then, A10−0 is driven, and CAS asserted, selecting a byte.

RAS, CAS, and refresh are managed by an external memory controller. 18

Fast Page Mode

• In the preceding example, each read accesses (and refreshes) all
16,384 cells in the addressed row.

• Only 8 bits are transferred, however.
• For more efficient access to data in the same row (page), latches
in sense amps buffer cell contents.

• Subsequent reads to the same row only require a new column
address and CAS strobe.

• This is called fast page mode and it speeds up block transfers.

19

Synchronous DRAM

• Synchronous DRAM
(SDRAM) integrates an
on-chip memory
controller

• A clock helps generate
internal timing signals
(i.e., RAS and CAS)

• Refresh is also built-in
• The “dynamic” nature
of the chip is invisible
to the user

20

Efficient Block Transfers

SDRAM can operate in different modes, which determines how
signals are generated internally.

• E.g., burst mode
automatically accesses
consecutive locations
in memory.

• Column address and
CAS are asserted for
one cycle.

• SDRAM circuitry
increments the column
counter internally for
each additional access.

A burst of length 4; RAS delay of 2 cycles;
CAS delay of 1 cycle.

21

Memory Latency and Bandwidth

• Memory latency (ns) is
time from initiation to
when the first word of
a block transfer is on
Data.

• The time between
subsequent accesses
to consecutive words
is much shorter.

• Memory bandwidth
(bps) measures the
maximum rate at
which data may be
transferred.

Latency is 5 cycles. If the clock is 500
MHz, the latency is 5 x 1/500e6 = 10 ns.
The remaining three words in the
transfer are read at one word every 2 ns.

22

Double-Data-Rate (DDR) SDRAM

Modern SDRAM uses both rising and falling edges of the clock
(“double data rate”).

E.g., DDR4 has a clock of 2133 MHz, and can support up to 2400 M
transfers per second.

8 GByte DDR4-2133 ECC 1.2 V RDIMM

(Registered dual-inline memory module)

23

Multi-chip Memories

Multiple smaller memories can be integrated to create a larger
memory. E.g., a 2M x 32 SRAM:

24

Memory Technology

Read-only Memories
Textbook§8.3

Non-volatile Memories

Non-volatile memories (NVM) are essential for today’s embedded
systems. NVM

• retain their contents even when unpowered; and,
• are slower than volatile memories, and require special
procedures for write accesses.

• NVM are usually used for long-term storage: e.g.,
• code and related data in embedded systems (addressable
memory), and

• solid state drives (SSD) when more storage is needed (managed by
the OS)

25

Read-only Memory (ROM)

26

PROM, EPROM, and EEPROM

A programmable ROM (PROM) is written once, at manufacturing time,
and cannot be later modified: e.g., a fuse is burned out with a large
current.

Other types of ROM can be erased and re-written in the field.

• An erasable programable ROM (EPROM) uses a special transistor
instead of a fuse.

• Injecting charge allows the transistor to turn on.
• Erasure requires UV light exposure to remove all charge.
• An electrically erasable programmable ROM (EEPROM) supports
the selective erasure of cells.

27

Flash Memory

Flash is a high-density, low-power, low-cost, and very widely adopted
NVM.

• Flash cells are designed to be erased in larger blocks, increasing
density

• Writing individual cells requires reading a block, erasing it, and
writing it back with changes

• Flash cells wear out: wear leveling distributes writes to avoid
wearing out some cells before others

28

Direct Memory Access (DMA)
Textbook§8.4

Direct Memory Access

CPU overhead for block transfers is high: an address calculation, and
load/store instruction, per byte or word.

• A DMA controller is an I/O
device that manages block
transfers between memory
and other devices.

• The CPU initiates the transfer,
which completes without
further CPU involvement.

29

DMA Controller

DMA controllers may be shared; individual I/O devices may also have
DMA controllers.

• CPU writes control registers
(starting address, count,
R/W), and initiates transfer.

• The controller keeps track of
progress with a counter.

• An interrupt can be used to
signal transfer completion.

• DMA can also be invoked to
make repeated transfers
triggered by a timer.

30

Caches
Textbook§8.5, 8.6

The Memory Problem

Problem: we want a very large, very fast memory.

• DRAM can be large, but is slow.
• SRAM can be fast, but not large.

Solution: use both DRAM and SRAM such that the memory appears
to the CPU to be large, and fast.

The solution should be transparent to the programmer.

31

The Memory Problem

Library: large, slow accessLibrary: large, slow access Desk: small, fast accessDesk: small, fast accessLibrary: large, slow access Desk: small, fast access

32

Unlimited amounts of fast memory?

The memory problem is as as old modern computing.

“Ideally one would desire an indefinitely large memory ca-
pacity such that any particular...word would be immediately
available...We are...forced to recognize the possibility of con-
structing a hierarchy of memories, each of which has greater
capacity than the preceding but which is less quickly acces-
sible.”

A. W. Burks, H. H. Goldstine, and J. von Neumann, “Preliminary
Discussion of the Logical Design of an electronic computing
instrument”, 1946.

33

Memory Hierarchy

We create the illusion of large, fast memory by keeping a copy of
(caching) frequently used data in a small memory (cache); accesses
to cached data (fast) do not require accesses to memory (slow).

• Programmers use load and store instructions as usual
• Specialized hardware manages the movement of data between
memory and the cache

34

Memory Hierarchy

Memory hierarchy design matters to hardware engineers:

• Different systems call for different amounts of memory
• Different manufacturing technologies mean different amounts of
delay for memory accesses

• Memory hierarchy must be carefully tuned for each system

Memory hierarchy design matters to software engineers:

• Memory hierarchy cannot hide all memory access delay
• Delay is hidden better for some access patterns than others
• Understanding memory hierarchy makes it easier to write fast
software

35

Memory Hierarchy

Modern memory hierarchies incorporate multiple levels of cache,
which may be split into instruction and data caches, or unified,
shared by multiple processors, or private.

36

Memory Hierarchy

Even when two different systems have the same number of levels or
hierarchy, different use cases may mean different sizes for each
memory.

37

Locality, Locality, Locality

Why does caching work?

• Programs and data are naturally
structured in convenient ways

• Software engineering, compilation,
and computer hardware, have
evolved together

• Consequently, memory accesses
tend to follow predictable patterns

• This is called the principle of
locality, which caches exploit

Temporal Locality

Recently accessed items
are likely to be accessed
again soon: loops, data
reuse.

Spatial Locality

Items near an accessed
item are likely to be
accessed soon: code
without branches, arrays.

38

Cache Basics

Caches are too small to store copies of the entire address space; at
any given time, some recently accessed things will be in the cache,
other things will not.

Each time the CPU (a) fetches an instruction, or (b) accesses data:

• Look for it in the cache.
• Is it there? That’s a cache hit

• Deliver the desired item to the processor

• Is it not there? That’s a cache miss
• Copy the item from main memory into the cache
• Deliver the desired item to the processor

39

Hit and Miss Rate

Caches improve performance as long as enough accesses hit in
cache.

• It is not uncommon for caches to have a hit rate of >95%.
• Instruction accesses are especially predictable; data accesses
less so.

hit rate = cache hits/memory accesses

miss rate = 1− hit rate

40

Where are items put in the cache?

The cache is a RAM; where should a particular item be stored in it?
Where do we look for the item that we want?

• Caching divides main memory into blocks (a.k.a. cache lines),
each consisting of several consecutive data elements.

• E.g., a typical cache line size is 64B.
• When a miss occurs, the block containing the desired item is
transferred from main memory.

• Where the block goes is determined by the mapping function.

Some mapping functions are simple; others are more complex, but
result in a higher hit rate.

41

Direct-mapped Cache

Assume a cache size of n blocks, and m words per block.

The simplest mapping function is direct mapping:

• Every block in memory maps to a single block in cache
• Memory block j goes in cache block (j mod n)

42

Direct-mapped Cache

Block size: m = 16B (16 words)
Cache size: n = 128 blocks
Main memory: 64KB→ 4K blocks
Address size: 16 bits

Memory block j goes in cache
block (j mod 128)

The 16-bit address is divided into
three parts: word, block, and tag:
• Word selects the appropriate
cache column (1 of 16)

• Block selects the appropriate
cache row (1 of 128)

43

Direct-mapped Cache

• Tag disambiguates different
memory blocks that map to
the same cache block

How many memory blocks map to
each cache block?

When a block is stored in cache,
the tag is also stored in the tag
array. On an access, the tag for
the requested word is compared
with that in the tag array.

Match? Hit!

Miss? Replace block; update tag.

What is the cache location and tag corresponding to address 2065?
44

Valid Bit

What happens when a cache block is accessed for the first time? The
tag could match, but the data would be invalid.

Each cache block also has a valid bit, initialized to ‘0,’ and set to ‘1’
whenever a block is copied into the cache.

• For a hit to occur, valid must be 1.
• Valid bits are reset under different circumstances, e.g., whenever
a new program begins executing.

45

Direct-mapped Cache Harware Design

46

Direct-mapped Cache

The advantage of direct-mapped caches: simple (and fast) hardware
maps memory addresses to cache blocks.

The drawback of direct-mapped caches: multiple blocks may
contend for the same location.

• Newly requested blocks always overwrite blocks previously
stored at a given location

• If multiple frequently accessed memory blocks map to the same
cache block, they will replace each other, resulting in more
misses, and costly accesses to main memory

47

Fully-associative Cache

With fully-associative mapping, a
memory block can be placed in
any cache block.
• Blocks are only replaced
when the cache is full

• There is no block field in the
address: only tag and word

• Every cache block is searched
simultaneously for a
matching tag

This is slower and more expensive, but achieves the highest hit rate.

48

Fully-associative Cache

Fully associative

V Tag Data

Mux

Tag Word idxAddress

=
1

1

1

word

cache line

=
1

1

1

hit

Mux

1

. . .

...

V Tag Data V Tag Data

. . .

=
1

1

1

...

49

Set-associative Cache

With set-associative mapping, a
memory block can be placed in
limited number of cache blocks.
k-way set-associativity:
• Blocks are grouped into sets
of k blocks

• Memory blocks are directly
mapped to a set

• The tags of the k blocks are
searched in parallel

This strikes a trade-off between direct-mapped and fully associative
caches, improving hit rate without the high cost of full associativity.

50

Set-associative Cache

V Tag Data

Mux

Tag Set idx Word idxAddress

D
e
co

d
e
r

. . .

1

1

1

=
1

1

1

word

Set-associative

V Tag Data

cache line / block

=
1

1

1

hit

Mux

1

. . .

...

cache set / row

51

Every Cache is Set-associative

Associativity determines the number of cache blocks in which a
memory block may be placed.

Assuming a cache with n blocks:

• 1-way set-associative caches are direct mapped
(there are n sets of one block)

• k-way set-associative (e.g., k ∈ {2, 4, 8, 16, . . .}, k < n)
(there are n/k sets of k blocks)

• n-way set-associative caches are fully associative
(there is one set with n blocks)

52

Block Replacement Policies

Block replacement (determining which block in the set to replace on
a cache miss) is trivial for direct-mapped caches; a strategy for
associative caches is needed, however.

• Least-recently-used (LRU): hardware tracks the relative timing of
accesses to each block in the set

• First-in-first-out (FIFO): replacement rotates through blocks in
the set

• Random: a block in the set is chosen at random for replacement

Each policy choice has pros and cons related to hardware complexity
and resulting miss rate. See more possibilities here.

53

https://en.wikipedia.org/wiki/Cache_replacement_policies

Writes to Cache

Depending on the organization of memory, writes to cache are
handled in a variety of different ways.

There are two commonly used policies:

• Write-through: update the accessed block in the cache, if
present, and main memory;

• Write-back: only write to the cache.

54

Write-through

Write-through simplifies memory system design at the cost of using
more memory bandwidth and energy: each write to cache results in
a write to main memory.

• Hit: write to both cache and main memory
• Miss: write only to main memory

55

Write-back

A write-back policy reduces memory bandwidth on most writes, but
increases the complexity of block replacment, and complicates
memory system design in general, especially for multiprocessors.

• Hit: write to the cache. Update main memory only when that
cache block is removed from the cache. A dirty bit (or modified
bit) is set to indicate cache block has been modified and is no
longer identical to the block in main memory.

• Miss: first copy the block containing the addressed word from
main memory into the cache, and then write the new word in
the cache block.

56

Caching Example

Assume a 4x10 array of
16-bit numbers is stored in
an array A in column-major
order.

Let’s look at cache behavior
when we normalize the
elements of the first row of
A with respect to the
average value of elements
in that row.

57

Caching Example

Consider a cache with the
following characteristics:
• Memory word: 16 bits
• Word-addressable with
16-bit addresses

• Block size: one word
• Cache size: 8 blocks
• LRU replacement

Let’s look at what happens
for three different caches:
• direct-mapped
• fully associative
• 4-way set associative

58

Caching Example: Direct-mapped Cache Results

Everything maps to just two sets!

Only two hits: when i = 9 and i = 8!

59

Caching Example: Fully-associative Cache Results

The cache lacks the capacity to store the working set.

Only two misses in the second loop: when i = 1 and i = 0!

60

Caching Example: Set-associative Cache Results

Everything maps to a single set, but we have four ways.

Six misses in the second loop in this case: when i ∈ {0, 1, . . . , 5}

61

Split L1 Cache

L1 is usually split into instruction and data caches; later levels are
unified.

• Harvard architecture:
unified L1 would slow
things down

• Instruction and data
access patterns are
quite different

• Instruction accesses
are predictable:
loops; basic blocks

• Instruction accesses
are read-only

• Splitting L1 cache
results in higher hit
rates

Instruction & Data cache

Instructions and data are stored in
same memory; however:

• Different access patterns

– repetitions (e.g. loops)

– linear sequences of
instructions

• Instructions are read-only
(mostly)

• L1 separated into data cache
and instruction cache

62

Secondary Storage
Textbook§8.10

Secondary Storage

In addition to memory, computer systems often have additional
storage.

• Non-volatile, long-term storage
• Managed by the OS (not directly
addressable by the CPU)

• Two main technologies today:
• Flash-based solid-state drives
(SSD): e.g., in mobile devices and
some laptops

• Magnetic hard-disk drives (HDD):
e.g., in workstations, servers

• HDD are lower cost / bit at the
moment, but this may change as
technology evolves

63

Magnetic Hard Disk Drives

Hard drive drives consist of one or more magnetic platters on a
common spindle.

• Platters are covered with a thin
magnetic film

• Platters rotate on spindle at a
constant rate (1000s of RPM)

• Read/write heads, close to the
surface, detect bits stored as a
magnetic field in concentric tracks

• The magnetic yoke and magnetizing
coil in the head sense or change the
polarity of the field on the surface of
the platter

64

Magnetic Hard Disk Drives

65

Magnetic Hard Disk Drives

Each disk is divided into concentric tracks, and each track into
sectors. A cylinder is a set of tracks on a stack of disks; such tracks
can accessed simultaneously without moving the read/write heads.

• Data is written
sector-by-sector (e.g., 512 B)

• Formatting information
(including track/sector
markers) and error-correcting
code (ECC) information is
stored on disk

• The file system is on disk, too:
data structures that the OS
uses to keep track of files

66

HDD Access Time

• Seek time: time required to move the read/write head to the
proper track

• Depends on the initial position of the head
• Typically 5 to 8 ms

• Latency: time to read addressed sector after the head is
positioned over the correct track

• On average, half the time for a full disk rotation

Access time = seek time + latency

• Flash access time is typically 35 to 100 µs (100x faster)

67

Virtual Memory
Textbook§8.8, 8.9

Virtual Memory

Physical memory capacity is almost always smaller than the address
space size.

• A large program, or many smaller concurrent programs, may
require more physical memory than is available

• Virtual memory uses secondary storage to hold data in excess of
memory capacity (in “swap file” or “page file”)

• Virtual memory is the lowest tier of the memory hierarchy
• Magnetic disk (5 ms) is five orders of magnitude (105) times slower
than SDRAM (15 ns)

• Virtual memory must be carefully managed (by the OS) to limit
disk accesses

68

Virtual Memory

• Programs are written assuming exclusive access to the whole
address space

• Processors access virtual addresses (logical addresses)
• Virtual addresses must be translated into physical addresses
• This works sort of like caching, but software (OS) managed:

• When the requested data is in physical memory (hit! a valid
translation exists), proceed like usual

• When it is not (miss! there is no valid translation), the requested
data must be moved from secondary storage to physical memory
(replacing something else)

• Fully associative mapping is used, e.g., with LRU replacement

69

Memory Management Unit

A hardware memory management unit (MMU) performs translation
from virtual addresses to physical addresses.

• The MMU maintains a table of translations from virtual to
physical addresses

• When no physical address exists for a given application and
virtual address, an interrupt occurs (page fault), and the OS
intervenes

• The OS transfers the desired data from disk to memory using
DMA (first copying some memory to disk, if physical memory is
full)

• The MMU is then updated to include the new translation

70

Virtual Memory Organization

71

Address Translation

Virtual memory is organized into pages.

• Pages are fixed∗ size, often 2-16 KB
• Pages are much larger than cache blocks
• Disks have high access times, but bandwidth in MB/s

• For translation, addresses are divided into two fields
• Upper bits give the virtual page number (VPN)
• Lower bits give the offset of a word within a page

• Translation preserves offset bits, but replaces VPN with the
appropriate page frame number (i.e., physical page number)

• The page table (stored in main memory) keeps track of the
mapping between virtual and physical page numbers

∗ except when they’re variable size

72

Address Translation

Virtual memory is organized into pages.

• Pages are fixed∗ size, often 2-16 KB
• Pages are much larger than cache blocks
• Disks have high access times, but bandwidth in MB/s

• For translation, addresses are divided into two fields
• Upper bits give the virtual page number (VPN)
• Lower bits give the offset of a word within a page

• Translation preserves offset bits, but replaces VPN with the
appropriate page frame number (i.e., physical page number)

• The page table (stored in main memory) keeps track of the
mapping between virtual and physical page numbers

∗ except when they’re variable size

72

Page Table

73

Page Table

The page table stores all translations from virtual to physical pages.

• The MMU stores the start address of
the page table: page table base
register (PTBR)

• PTBR + VPN = address of the page
table entry (PTE) for the given VPN

• Each PTE maintains control bits
(valid? modified?)

• Each PTE also stores the page frame
number if the page is in memory

• Otherwise, it may indicate where on
disk the page can be found

• PTEs also track process information,
read/write permission, etc

74

Translation Lookaside Buffer (TLB)

The MMU must perform translation for each memory access (i.e.,
every fetch, every load or store). If each translation requires a
references to the page table, this is slow!

• When physical memory is large, the page table has many entries
• It isn’t practical to store the page table in the MMU
• The translation lookaside buffer (TLB) in the MMU caches
recently accessed PTEs

• The TLB is fully associative; on a miss, the full table is accessed,
and TLB updated (e.g., using LRU replacement)

• Split L1 caches? Two TLBs: one for instructions accesses, another
for data accesses

75

Translation Lookaside Buffer (TLB)

76

Page Faults

• A page fault occurs when a virtual address has no corresponding
physical address

• The MMU raises an interrupt so the OS can place the appropriate
page in the memory, and create the corresponding translation

• The OS uses LRU to select a page frame to replace, writing the
old frame to memory if necessary

• Handling page faults takes a long time, requiring disk accesses!
• Usually the OS selects another program to execute while waiting
• The suspended program restarts later when the page is ready

77

Conclusions

This set of lectures introduced how computer system memory is
organized. We’ve looked at:

• Memory technology: SRAM, DRAM, ROM, etc
• Direct memory access (DMA) hardware that assists with large
memory transfers

• Caches for reducing the latency of memory accesses
• Secondary storage: hard-disk drives, and solid-state drives
• Virtual memory, which expands physical memory size using
secondary storage

Next we’ll look at how processors themselves are implemented, and
how they execute instructions.

78

	Introduction
	Memory Technology
	Semiconductor RAM Memories Textbook§8.1, 8.2
	Read-only Memories Textbook§8.3

	Direct Memory Access (DMA) Textbook§8.4
	Caches Textbook§8.5, 8.6
	Secondary Storage Textbook§8.10
	Virtual Memory Textbook§8.8, 8.9

