
Computer Organization
Processor Implementation

ECSE 324

Fall 2020

Prof. Christophe Dubach

Original slides from Prof. Warren Gross. Some material from Hamacher, Vranesic, Zaky, and Manjikian, “Computer Organization and
Embedded Systems, 6th ed”, 2012, McGraw Hill and “Introduction to the ARM Processor using Altera Toolchain”.

The Processor
• A processor is responsible for

reading program instructions from
the computer’s memory and
executing them.

• It fetches one instruction at a time.

• It decodes (interprets) the
instruction.

• Then, it carries out the actions
specified by the instruction

Die photo of an ARM Cortex-M3
processor

Processor building blocks

• PC holds the address of the
next instruction to be fetched
and executed

• Instruction is fetched into IR:

IR ⟵ [PC]

• Instruction address generator
updates PC (for straight line
code):

PC PC + 4⟵

• Control circuitry decodes the
instruction and generates
control signals that direct the
datapath

Processor building blocks

• PC holds the address of the
next instruction to be fetched
and executed

• Instruction is fetched into IR:

IR ⟵ [PC]

• Instruction address generator
updates PC (for straight line
code):

PC PC + 4⟵

• Control circuitry decodes the
instruction and generates
control signals that direct the
datapath

datapath

control signals

Datapath design
Textbook 5.1-5.4

5

• Contents of register A are processed and deposited in register B

clock period is determined by the delay of the combinational logic circuit

• Combinational circuits can be divided into simpler subcircuits that
are cascaded into a multi-stage structure.

• n stages: n clock cycles to complete the operation
• Clock period can be shorter: 1/n
• Can be pipelined (overlap the execution of several instructions)

Instruction execution

• In RISC machines, all instructions are executed in the
same number of steps.

• Each step is carried out in a separate hardware stage.

• RISC processor design will be illustrated using five
hardware stages

• The processor design will model the basic RISC
instructions and addressing modes, but not every detail
of an ARM ISA

Load instruction

LDR R5, [R7, R8] R5 [R7 + R8]⟵
 offset mode

1. Fetch the instruction and increment the program counter

2. Decode the instruction and read the contents of registers R7
and R8 in the register file

3. Compute the effective address Z R7 + R8⟵

4. Read the memory source operand [Z]

5. Write the operand into the destination register

R5 [Z]⟵

Arithmetic and logical instructions

Add R3, R4, R5 R3 ⟵ R4 + R5

1. Fetch the instruction and increment the program counter

2. Decode the instruction and read registers R4 and R5 from the
register file

3. Compute the sum Z = R4 + R5

4. No action why do we need this step ?

5. Write the result into the destination register

 R3 Z ⟵

Stage 4 (memory access) is not involved in this instruction.

Immediate Operands

 Add R3, R4, #1000 R3 ⟵ R4 + 1000

The immediate operand is given in the instruction word and can be
found in the IR.

1. Fetch the instruction and increment the program counter

2. Decode the instruction and read register R4 from the register file

3. Compute the sum Z = R4 + 1000

4. No action

5. Write the result into the destination register

 R3 Z ⟵

Load instruction (immediate)

LDR R5, [R7, #X] R5 [R7 + X]⟵

The immediate operand is given in the instruction word and can be found in the IR

1. Fetch the instruction and increment the program counter

2. Decode the instruction and read the contents of register
R7 in the register file

3. Compute the effective address Z R7 + X⟵

4. Read the memory source operand [Z]

5. Write the operand into the destination register

R5 [Z]⟵

Store instruction

STR R6, [R8, #X] MEM[R8+X] [R6] ⟵

1. Fetch the instruction and increment the program counter

2. Decode the instruction and read the contents of registers
R6 and R8 in the register file

3. Compute the effective address Z = R8 + X

4. Store the contents of register R6 into memory location
X + [R8] MEM[Z] R6⟵

5. No action

Summary – Actions to implement an instruction

1. Fetch an instruction and increment the program counter.

2. Decode the instruction and read registers from the register file.

3. Perform an ALU operation.

4. Read or write memory data if the instruction involves a memory
operand.

5. Write the result into the destination register

5 hardware stages will be needed

Stages 1, 2, and 3 will be used for all instructions

Stages 4 and 5 may not perform a useful action for some instructions

Hardware components: Register file

• A 2-port register file is
needed to read the two
source registers at the
same time.

• It may be implemented
using a 2-port memory.

Alternative implementation of 2-port register file

• Using two single-
ported memory
blocks each
containing a copy
of the register file

ALU

• Both source
operands and the
destination location
are in the register
file.

• Conceptual single-
cycle view of an
arithmetic or logical
instruction with two
source operands in
registers

RA
new RC

RB

• One of the source
operands is the
immediate value in
IR

RA

new RC

A 5-stage implementation of a RISC processor

• Instruction processing moves
from stage to stage in every
clock cycle, starting with
fetch.

• The instruction is decoded
and the source registers are
read in stage 2.

• Computation takes place in
the ALU in stage 3.

A 5-stage implementation of a RISC processor

• If a memory operation is
involved, it takes place in
stage 4.

• The result of the instruction is
stored in the destination
register in stage 5.

How can we decode the instruction and read the registers
at the same time?

• In a RISC ISA, the register fields are always in the same
positions in the instruction. If the registers were not needed by
that instruction, the retrieved values will be ignored.

21

27 20 19 16 15 12 11 031

ADD R4, R5, #24

Load/Store encoding

ADD R1, R3, R2

Waiting for memory

• We have assumed that all memory accesses take one
clock cycle. Is this realistic?

• Mostly true if we use a cache!

• In the case of cache miss, the processor must be stalled
to wait for the memory access to complete (a variable
number of cycles)

• The processor-memory interface generates a signal
called Memory Function Completed (MFC)

• Processor extends the duration of the memory step (in
units of clock cycles) until MFC is asserted

22

The datapath – Stages 2 to 5
• Register file,

used in stages 2 and 5

• Multicycle: Inter-stage registers
RA, RB, RZ, RY needed to carry
data from one stage to the next

• ALU stage

• Memory stage

• Final stage to store result
to the register file

Register file – Stages 2 & 5
• Address inputs are

connected to the
corresponding fields
in IR

• Source registers are
read in stage 2; their
contents are stored in RA
and RB

• In stage 5, the result of
the instruction is stored
in the destination
register selected by
Address C

ALU stage
• ALU performs

calculation specified
by the instruction.

• Multiplexer MuxB
selects either RB or
the Immediate field
of IR

• Results stored in RZ

• Data to be written in
the memory are
transferred from RB
to RM

Memory stage
• For a memory

instruction, RZ provides
memory address, and
MuxY selects read data
to be placed in RY.

• RM provides data for a
memory write
operation.

• For a calculation
instruction, MuxY selects
RZ to be placed in RY.

• Input 2 of MuxY is used
in subroutine calls.

(from instruction address generator)

Memory address generation

• MuxMA selects the PC when
fetching instructions.

• The Instruction address
generator increments the PC
after fetching an instruction.

• It also generates branch and
subroutine addresses.

• MuxMA selects RZ when
reading/writing data
operands.

return from subroutine
PC ← LR

subroutine call
LR ← PC

Processor control section
• When an instruction is

read, it is placed in IR.

• The control circuitry
decodes the instruction.

• It generates the control
signals that drive all units.

• The Immediate block
extends the immediate
operand to 32 bits,
according to the type of
instruction

arithmetic: sign-extend
logic: zero padding

Instruction address generator

• Connections to
registers RY and RA
are used to support
subroutine call and
return instructions.

sign extended by
immediate block
on last slide

return from subroutine
PC ← LR

subroutine call or
interrupt
LR ← PC

Example: Add R3, R4, R5
1. Memory address PC,←

Read memory,
IR Memory data, ←
PC PC ← + 4

2. Decode instruction,
RA R4, ←
RB R5←

3. RZ RA + RB←

4. RY RZ←

5. R3 RY←

All of these actions
happen in parallel

Example: LDR R5, [R7, #X]
1. Memory address PC,←

Read memory,
IR Memory data, ←
PC PC + 4←

2. Decode instruction,
RA R7←

3. RZ RA + Immediate value X←

4. Memory address RZ, ←
Read memory,
RY Memory data←

5. R5 RY←

Example: STR R6, [R8, #X]
1. Memory address PC, ←

Read memory,
IR Memory data, ←
PC PC + 4←

2. Decode instruction,
RA R8,←
RB R6←

3. RZ RA + Immediate value X,←
RM RB←

4. Memory address RZ,←
Memory data ← RM,
Write memory

5. No action

Unconditional branch

1. Memory address ← PC,
Read memory,
IR Memory data,←
PC ← PC + 4

2. Decode instruction

3. PC PC ← + Branch offset

4. No action

5. No action

Conditional branch

• We will illustrate the generic RISC branch, that does not
use condition codes.

• Instead, RISC branches compares values in registers
and tests for some condition

e.g. BEQ R5, R6, LOOP

branches to LOOP if [R5] = [R6]

34

Conditional branch: BEQ R5, R6, LOOP

1. Memory address PC, ←
Read memory,
IR Memory data, ←
PC PC + 4←

2. Decode instruction,
RA R5,←
RB R6←

3. RZ RA – RB, ←
If ALUiszero = 1 then PC PC + Branch offset←

4. No action

5. No action
ALU has flags for zero, positive, negative, overflow, carry out

ARM Datapath

36

Control design
Textbook 5.5-5.7

37

Example RISC instruction format

38

Control signals

• Select multiplexer inputs to
guide the flow of data.

• Set the function performed by
the ALU.

• Determine when data are written
into the PC, the IR,
the register file, and the memory.

• Inter-stage registers are always
enabled because
their contents are only relevant
in the cycles for which
the stages connected to the
register outputs are active.

Memory and IR control signals

wait for MFC before asserting IR_enable

this arch can
sign_extend
16-bit , zero
pad 16 bit, or
26-bit
immediate

Control signals of instruction address generator

Control signal generation

• The control unit generates the control signals so the actions in the datapath
take place in the correct sequence and at the correct time.

• Two basic approaches:

1. hardwired control

2. microprogramming

• Hardwired control involves implementing a finite state machine (FSM).

• The state of the FSM is kept in a counter that keeps track of the execution
step (one clock cycle / each of the 5 steps, unless a memory access takes
more than one cycle)

• The inputs to the FSM are the IR, ALU result (result of a computation,
comparison), and external inputs such as interrupt requests

• The outputs are the control signals

Hardwired generation of control signals

• Example: step 1 (fetch)

T1 = 1

MA_select = 1

MEM_read = 1

IR_enable = 1 when MFC
asserted

PC incremented by 4 by
setting INC_select to
0 and PC_select to 1

PC_enable = 1

modulo-5 counter

Example

• Wait until MFC to be asserted before incrementing step
counter in a step in which MEM_read or MEM_write
command is issued

• Counter_enable should be set to 1 in any step in which
WFMC (wait for memory complete) is not asserted
otherwise, it should be set to one when MFC is asserted

• What is the logic expression for the Counter_enable
signal?

44

Example

• Make sure the PC is incremented only once when a
execution step is extended for more than one clock
cycle

• PC should only be enabled when MFC is asserted, also in
step 3 of branch instructions

• What is the logic expression for the PC_enable signal?

45

• CISC-style processors
have more complex
instructions.

• Addressing modes
that allow operands to
be in memory,
variable-length
instructions

CISC processors

Bus

• An example of an interconnection network.

• When functional units are connected to a common bus,
tri-state drivers are needed.

A 3-bus CISC organization

addresses and
immediate
connections not
shown

Example: AND X(R7), R9
(2 word instruction)

1. Memory address PC,←
Read memory, Wait for MFC,
IR Memory data, PC ← ← PC + 4

2. Decode instruction

3. Memory address PC,←
Read memory, Wait for MFC,
Temp1 Memory data, PC PC + 4← ←

4. Temp2 Temp1 + R7←

5. Memory address Temp2,←
Read memory, Wait for MFC,
Temp1 Memory data←

6. Temp1 Temp1 AND R9←

7. Memory address Temp2,←
Memory data Temp1, ←
Write memory, Wait for MFC

fetch opcode

fetch second instruction word (X)

Microprogrammed control

• Microprogramming is a software-based approach
for the generation of control signals.

• The values of the control signals for each clock period are
stored in a microinstruction (control word) in a special
memory.

• A processor instruction is implemented by a sequence of
microinstructions.

• From decoding of an instruction in IR, the control circuitry
executes the corresponding sequence of microinstructions.

• PC maintains the location of the current microinstruction.

Microprogramming

• Microprogramming provides the flexibility needed
to implement more complex instructions in CISC
processors.

• However, reading and executing microinstructions
incurs undesirably long delays in high-performance
processors.

Pipelining
Textbook 6.1-6.7

53

Example

54

Wash Dry Fold

3 hours to complete one load

Example

55

Wash Dry Fold

6 hours to complete two loads

Wash Dry Fold

Example

56

Wash Dry Fold

Wash Dry Fold

Example

Wash Dry Fold

Wash Dry Fold

Wash Dry Fold

3 hours to complete one load
1 load completes every hour
6 hours to complete 4 loads

Wash Dry Fold

What is pipelining?

• Pipelining is applying the ”assembly line” concept to the
execution of instructions

• Multiple instructions can be executed simultaneously !

• Divide the instruction into distinct steps (e.g. 5 steps)

• Overlap the execution of the five steps by allowing the
hardware for each step to work on the next instruction
in the program after it is finished working on the current
instruction

58

Each instruction still takes 5 cycles to execute, but the rate is 1 instruction per cycle

Pipeline Organization

• Use program counter (PC) to fetch instructions

• A new instruction enters pipeline every cycle

• Carry along instruction-specific information as
instructions flow through the different stages

• Use interstage buffers or pipeline registers to hold this
information

• These buffers incorporate RA, RB, RM, RY, RZ, IR, and
PC-Temp registers

• The buffers also hold control signal settings

ALU

Data Dependencies

ADD R2, R3, R7
SUB R9, R2, R8

• Destination R2 of Add is a source for Subtract

• There is a data dependency between them because R2
carries data from Add to Subtract

• On non-pipelined datapath, result is available
in R2 because Add completes before Subtract

• The pipeline does not allow the simultaneous
execution of these particular instructions
because of the data dependency

• This is called a data hazard

Ij: ADD R2, R3, R7
Ij+1: SUB R9, R2, R8

result of Ij
written

Ij+1 reads old value of R1 !
 → incorrect result

Stalling the Pipeline

• With pipelined execution, old value is still in register R2
when Subtract is in Decode stage

• So stall Subtract for 3 cycles in Decode stage

• New value of R2 is then available in cycle 6

ADD R2, R3, R7

SUB R9, R2, R8

Details for Stalling the Pipeline
• Control circuitry must recognize dependency while Subtract is

being decoded in cycle 3

• Interstage buffers carry register identifiers for source(s) and
destination of instructions

• In cycle 3, compare destination identifier in Compute stage against
source(s) in Decode

• R2 matches, so Subtract kept in Decode while Add allowed to
continue normally

ADD R2, R3, R7

SUB R9, R2, R8

• Stall the Subtract instruction for 3
cycles by holding interstage
buffer B1 contents steady

• But what happens after Add
leaves Compute?

• Control signals are set in cycles 3
to 5 to create an implicit NOP
(No-operation) in Compute

• NOP control signals in interstage
buffer B2 create a cycle of idle
time in each later stage

• The idle time from each NOP is
called a bubble

ADD R2, R3, R7

SUB R9, R2, R8

Can we avoid stalls?

• Operand forwarding handles some dependencies
without the penalty of stalling the pipeline

• For the preceding sequence of instructions, new value
for R2 is available at end of cycle 3

• Forward value to where it is needed in cycle 4

ADD R2, R3, R7

SUB R9, R2, R8

Forwarding hardware

Introduce multiplexers before
ALU inputs to use contents of
register RZ as forwarded value

Another example of forwarding

Ij: ADD R2, R3, R7
Ij+1: ORR R4, R5, R6
Ij+2: SUB R9, R2, R8

Another example of forwarding

Ij: ADD R2, R3, R7
Ij+1: ORR R4, R5, R6
Ij+2: SUB R9, R2, R8

Extend MuxB to allow forwarded input from RY

Software Handling of Dependencies

• Data dependencies are
evident at compile time

• Compiler puts three explicit
NOP instructions between
instructions having a
dependency

• Delay ensures new value
available in register but
causes total execution time
to increase

• Compiler can optimize by
moving instructions into
NOP slots (if data
dependencies permit)

ADD R2, R3, R7

SUB R9, R2, R8

Memory delays

73

Cache misses result in delay in memory stage

LDR R2, [R3]

Memory Delays

• Even with a cache hit, a Load instruction may cause a
short delay due to a data dependency

• One-cycle stall required for correct value to be
forwarded to instruction needing that value

• Optimize with useful instruction to fill delay

LDR R2, [R3]

SUB R9, R2, R8

Branch Delays

• Ideal pipelining: fetch each new instruction while previous
instruction is being decoded

• Branch instructions alter execution sequence – the branch
instruction has to compute the target address and also
perform a comparison to determine if we go to the target or
fall-through instruction next

• Since these computations happen in later clock cycles, there
is a hazard created when pipelining a branch instruction

Unconditional Branches

target address known in C stage (offset + (PC+4))

Discard instructions Ij+1 and Ij+2

 ⟶ 2 cycle branch penalty

Reducing the Branch Penalty

• Must compute the target address earlier in the pipeline

• Introduce a second adder dedicated to computing the branch target in
the decode stage

Branch penalty
reduced to one
cycle

Conditional Branches

• Requires not only target address calculation, but also
requires comparison in ALU for condition

• Target address now calculated in Decode stage
(2 cycle penalty)

• How can we reduce to one-cycle penalty?

• introduce a comparator just for branches in Decode stage

BEQ R5, R6, LOOP

Delayed branching

• Assuming that both branch decision and target address
are determined in Decode stage of pipeline, there is still
an unavoidable branch delay of one cycle

• Allow the compiler to fill this branch delay slot with a
useful instruction, usually from before the branch.

• Alter the pipeline operation so that the Instruction immediately
following a branch is always fetched and executed, regardless
of branch decision

• If no suitable instruction can be found to fill the slot
(because of dependencies) the compiler must put a
NOP in the slot

What’s next

• In the next chapter we will look at how to efficiently do
arithmetic in computers – how to build fast adders and
multipliers for the compute stages in pipelines

• We will also learn about floating-point representation

81

	Slide 1
	The Processor
	Processor building blocks
	Slide 4
	Datapath design
	Slide 6
	Slide 7
	Instruction execution
	Slide 9
	Slide 10
	Immediate Operands Add R3, R4, #1000 R3 ⟵ [R4] + 1000
	Slide 12
	Slide 13
	Summary – Actions to implement an instruction
	Hardware components: Register file
	Alternative implementation of 2-port register file
	ALU
	Slide 18
	A 5-stage implementation of a RISC processor
	A 5-stage implementation of a RISC processor
	Slide 21
	Waiting for memory
	The datapath – Stages 2 to 5
	Register file – Stages 2 & 5
	ALU stage
	Memory stage
	Memory address generation
	Processor control section
	Instruction address generator
	Example: Add R3, R4, R5
	Example: LDR R5, [R7, #X]
	Example: STR R6, [R8, #X]
	Unconditional branch
	Conditional branch
	Conditional branch: BEQ R5, R6, LOOP
	ARM Datapath
	Control design
	Example RISC instruction format
	Control signals
	Memory and IR control signals
	Control signals of instruction address generator
	Control signal generation
	Hardwired generation of control signals
	Example
	Example
	Slide 46
	Bus
	A 3-bus CISC organization
	Example: AND X(R7), R9 (2 word instruction)
	Microprogrammed control
	Slide 51
	Microprogramming
	Pipelining
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	What is pipelining?
	Slide 59
	Pipeline Organization
	Slide 61
	Data Dependencies
	Slide 63
	Stalling the Pipeline
	Details for Stalling the Pipeline
	Slide 66
	Can we avoid stalls?
	Forwarding hardware
	Slide 69
	Another example of forwarding
	Slide 71
	Software Handling of Dependencies
	Memory delays
	Memory Delays
	Branch Delays
	Unconditional Branches
	Reducing the Branch Penalty
	Conditional Branches
	Delayed branching
	Slide 80
	What’s next

