
Prof. Christophe Dubach
Original slides from: Prof. Derek Nowrouzezahrai

COMPUTER ORGANIZATION
ECSE 324

SOFTWARE — ASSEMBLERS, LINKERS,
COMPILERS & DEBUGGERS

ECSE 324: Computer Organization

Outline

�2

You’ve discussed the behavior of assembly
instructions and the operations they can perform
- the process of implementing an algorithm using

assembly instructions should be clear at this stage

We will discuss the pragmatics of how to program
and run algorithms on a computing platform

ECSE 324: Computer Organization

We will discuss the pragmatics of how to program
and run algorithms on a computing platform

�3

- from assembly to machine instructions
- transitioning to higher-level languages

- execution and management of machine code

ECSE 324: Computer Organization

We will discuss the pragmatics of how to program
and run algorithms on a computing platform
- from assembly to machine instructions

- transitioning to higher-level languages
- execution and management of machine code

�4

ECSE 324: Computer Organization

We will discuss the pragmatics of how to program
and run algorithms on a computing platform
- from assembly to machine instructions

- transitioning to higher-level languages
- execution and management of machine code

�5

ECSE 324: Computer Organization

Assembly Language

�6

Assembly is a convenient* abstraction designed
for human creation and consumption
- computers don’t naturally “speak” assembly

Before an algorithm, implemented in assembly,
can be executed on a computer it must be:
- validated for correctness*
- converted to a form consumable by a computer

• properly ordered machine code

ECSE 324: Computer Organization

Enter the Assembler

�7

The assembler is a software tool that:
- verifies assembly code listings for validity, and
- converts valid assembly opcodes and operands

into their associated machine code values
- computes a memory layout for the machine code

ECSE 324: Computer Organization

Assembling Source Code

�8

The assembler accepts assembly source listings,
stored in an input text file, as input…

ECSE 324: Computer Organization

Assembling Source Code

�9

… recognizes individual assembly instruction
mnemonics (or doesn’t!)…
- interprets addressing modes and data operands

ECSE 324: Computer Organization

Assembling Source Code

�10

… converts them to their associated machine OP
binary (or equivalent) codes…

ECSE 324: Computer Organization

Assembling Source Code

�11

… lays out the OP codes in (relative) memory…
- usually in a sequential block of memory

- where do empty lines in the layout come from?

ECSE 324: Computer Organization

OP Code Size

�12

OP codes might not all occupy the same amount
of memory! (it does for ARM but not for X86)
- varying number of data arguments

- compactness of addressing modes

Copyright © John Philip Jones

ECSE 324: Computer Organization

Assembling Source Code

�13

… recognizes data directives and labels …
- allocates and populates space appropriately

- populates symbol table with label names & locations

ECSE 324: Computer Organization

Assembling Source Code

�14

… searches and replaces symbolic entries with
their associated values from the symbol table
The assembler outputs an object program to file

in.asm
[plain text]

out.obj
[binary]

We say that an assembler assembles to object code

ECSE 324: Computer Organization

Early Assemblers: Pen, Paper & Books

�15

Today, assemblers are programs that we
execute on computers
- using computers to program computers

In the past, humans had to manually assemble
their own code
- working through this process can be helpful

ECSE 324: Computer Organization

Early Assemblers: Pen, Paper & Books

�16

Type your assembly code in a text editor

ECSE 324: Computer Organization

Early Assemblers: Pen, Paper & Books

�17

Type Write your assembly code in a text editor
on paper

ECSE 324: Computer Organization

Early Assemblers: Pen, Paper & Books

�18

Sequentially replace assembler mnemonics (and
data/addressing operands) with their binary
machine OP codes
- How? Read The Manual…

ECSE 324: Computer Organization

Early Assemblers: Pen, Paper & Books

�19

Sequentially replace assembler mnemonics (and
data/addressing operands) with their binary
machine OP codes

ECSE 324: Computer Organization

Early Assemblers: Pen, Paper & Books

�20

Perform (manual) relative memory layout

ECSE 324: Computer Organization

Two-pass Assemblers

�21

An important question arises during assembly,
when substituting values from the symbol table:
- what happens if we encounter a label/name without

an existing symbol table entry (a forward reference)?

- what’s the problem here? how would you solve it?

ECSE 324: Computer Organization

Two-pass Assemblers

�22

Two-pass assemblers solve this problem by:
1. making an initial pass: converting mnemonics and

building the symbol table when you can

ECSE 324: Computer Organization �23

Two-pass assemblers solve this problem by:
1. making an initial pass: converting mnemonics and

building the symbol table when you can

Memory Address OP Code/Data
0x00
0x01
0x02
0x03

Object Program Memory Map

Symbol Name Symbol Value

Symbol Table

ECSE 324: Computer Organization �24

Two-pass assemblers solve this problem by:
1. making an initial pass: converting mnemonics and

building the symbol table when you can

Memory Address OP Code/Data
0x00
0x01
0x02
0x03

Symbol Name Symbol Value
loop1

Object Program Memory Map

Symbol Table

ECSE 324: Computer Organization �25

Two-pass assemblers solve this problem by:
1. making an initial pass: converting mnemonics and

building the symbol table when you can

Memory Address OP Code/Data
0x00
0x01
0x02
0x03

Symbol Name Symbol Value
loop1 0x00

Object Program Memory Map

Symbol Table

ECSE 324: Computer Organization �26

Two-pass assemblers solve this problem by:
1. making an initial pass: converting mnemonics and

building the symbol table when you can

Memory Address OP Code/Data
0x00
0x01
0x02
0x03

Symbol Name Symbol Value
loop1 0x00

Object Program Memory Map

Symbol Table
assume/given:
inc is a 1-byte instruction:
• 4-bit OP code
• 4-bit operand code

ECSE 324: Computer Organization �27

Two-pass assemblers solve this problem by:
1. making an initial pass: converting mnemonics and

building the symbol table when you can

Memory Address OP Code/Data
0x00 3A
0x01
0x02
0x03

Symbol Name Symbol Value
loop1 0x00

Object Program Memory Map

Symbol Table
assume/given:
inc is a 1-byte instruction:
• 4-bit OP code
• 4-bit operand code

ECSE 324: Computer Organization �28

Two-pass assemblers solve this problem by:
1. making an initial pass: converting mnemonics and

building the symbol table when you can

Memory Address OP Code/Data
0x00 3A
0x01
0x02
0x03

Symbol Name Symbol Value
loop1 0x00

Object Program Memory Map

Symbol Table
assume/given:
cmp is a 1-byte instruction

ECSE 324: Computer Organization �29

Two-pass assemblers solve this problem by:
1. making an initial pass: converting mnemonics and

building the symbol table when you can

Memory Address OP Code/Data
0x00 3A
0x01 7F
0x02
0x03

Symbol Name Symbol Value
loop1 0x00

Object Program Memory Map

Symbol Table
assume/given:
cmp is a 1-byte instruction

ECSE 324: Computer Organization �30

Two-pass assemblers solve this problem by:
1. making an initial pass: converting mnemonics and

building the symbol table when you can

Memory Address OP Code/Data
0x00 3A
0x01 7F
0x02
0x03

Symbol Name Symbol Value
loop1 0x00

Object Program Memory Map

Symbol Table
assume/given:
jne is a 1-byte instruction:
• 4-bit OP code (F)
• 4-bit operand

ECSE 324: Computer Organization �31

Two-pass assemblers solve this problem by:
1. making an initial pass: converting mnemonics and

building the symbol table when you can

Memory Address OP Code/Data
0x00 3A
0x01 7F
0x02 F_
0x03

Symbol Name Symbol Value
loop1 0x00

Object Program Memory Map

Symbol Table
assume/given:
jne is a 1-byte instruction:
• 4-bit OP code (F)
• 4-bit operand

?

ECSE 324: Computer Organization �32

Two-pass assemblers solve this problem by:
1. making an initial pass: converting mnemonics and

building the symbol table when you can

Memory Address OP Code/Data
0x00 3A
0x01 7F
0x02 F_
0x03

Symbol Name Symbol Value
loop1 0x00

Object Program Memory Map

Symbol Table
assume/given:
jne is a 1-byte instruction:
• 4-bit OP code (F)
• 4-bit operand

?

ECSE 324: Computer Organization �33

Two-pass assemblers solve this problem by:
1. making an initial pass: converting mnemonics and

building the symbol table when you can

Memory Address OP Code/Data
0x00 3A
0x01 7F
0x02 F_
0x03

Symbol Name Symbol Value
loop1 0x00
loop2

Object Program Memory Map

Symbol Table
assume/given:
jne is a 1-byte instruction:
• 4-bit OP code (F)
• 4-bit operand

?

ECSE 324: Computer Organization �34

Two-pass assemblers solve this problem by:
1. making an initial pass: converting mnemonics and

building the symbol table when you can

Memory Address OP Code/Data
0x00 3A
0x01 7F
0x02 F_
0x03

Symbol Name Symbol Value
loop1 0x00
loop2 0x03

Object Program Memory Map

Symbol Table
assume/given:
jne is a 1-byte instruction:
• 4-bit OP code (F)
• 4-bit operand

?

ECSE 324: Computer Organization �35

Two-pass assemblers solve this problem by:
1. making an initial pass: converting mnemonics and

building the symbol table when you can

Memory Address OP Code/Data
0x00 3A
0x01 7F
0x02 F_
0x03

Symbol Name Symbol Value
loop1 0x00
loop2 0x03

Object Program Memory Map

Symbol Table
assume/given:
ret is a 1-byte instruction:
• 8-bit OP code

?

ECSE 324: Computer Organization �36

Two-pass assemblers solve this problem by:
1. making an initial pass: converting mnemonics and

building the symbol table when you can

Memory Address OP Code/Data
0x00 3A
0x01 7F
0x02 F_
0x03 DD

Symbol Name Symbol Value
loop1 0x00
loop2 0x03

Object Program Memory Map

Symbol Table
assume/given:
ret is a 1-byte instruction:
• 8-bit OP code

?

ECSE 324: Computer Organization

Two-pass Assemblers

�37

Two-pass assemblers solve this problem by:
1. making an initial pass: converting mnemonics and

building the symbol table when you can

2. make a final pass filling in missing references

ECSE 324: Computer Organization

building the symbol table when you can

2. make a final pass filling in missing references

�38

Memory Address OP Code/Data
0x00 3A
0x01 7F
0x02 F_
0x03 DD

Symbol Name Symbol Value
loop1 0x00
loop2 0x03

Object Program Memory Map

Symbol Table
Missing reference?
• No

?

ECSE 324: Computer Organization

building the symbol table when you can

2. make a final pass filling in missing references

�39

Memory Address OP Code/Data
0x00 3A
0x01 7F
0x02 F_
0x03 DD

Symbol Name Symbol Value
loop1 0x00
loop2 0x03

Object Program Memory Map

Symbol Table
Missing reference?
• No

?

ECSE 324: Computer Organization

building the symbol table when you can

2. make a final pass filling in missing references

�40

Memory Address OP Code/Data
0x00 3A
0x01 7F
0x02 F_
0x03 DD

Symbol Name Symbol Value
loop1 0x00
loop2 0x03

Object Program Memory Map

Symbol Table
Missing reference?
• Yes!
• Find & replace value

 from symbol table

?

ECSE 324: Computer Organization

building the symbol table when you can

2. make a final pass filling in missing references

�41

Memory Address OP Code/Data
0x00 3A
0x01 7F
0x02 F3
0x03 DD

Symbol Name Symbol Value
loop1 0x00
loop2 0x03

Object Program Memory Map

Symbol Table
Missing reference?
• Yes!
• Find & replace value

 from symbol table

ECSE 324: Computer Organization

building the symbol table when you can

2. make a final pass filling in missing references

�42

Memory Address OP Code/Data
0x00 3A
0x01 7F
0x02 F3
0x03 DD

Symbol Name Symbol Value
loop1 0x00
loop2 0x03

Object Program Memory Map

Symbol Table
Missing reference?
• No

ECSE 324: Computer Organization

Loading & Executing Object Programs

�43

Once an object program binary memory
layout is generated, we can execute our
assembled program

How?
- by invoking a loader program

ECSE 324: Computer Organization

Loader Program

�44

The loader program has 3 responsibilities:
1. load object program’s contents from file into memory

2. jump to starting address to execute program

3. recover memory after program execution

ECSE 324: Computer Organization

Loader Program

�45

The loader program has 3 responsibilities:
1. load object program’s contents from file into memory

• user identifies file via, e.g., command-line/GUI/etc.
• loader needs to know: start address & program length

out.obj
[binary]

0x8000 B9
0x8001 FF
0x8002 FF
0x8003 FF
0x8004 FF
0x8005 41
0x8006 80
0x8007 3C
0x8008 08
0x8009 00
0x800A 75
0x800B F9
0x800C C3

…
…

RAM

Symbol Name Symbol Value

START 0x00
loop1 0x00

loop2 0x03

Symbol Table

ECSE 324: Computer Organization

Loader Program

�46

The loader program has 3 responsibilities:
2. jump to starting address

• i.e., sets the program counter to the absolute start point
• i.e., executes the first instruction of the object program…

…

0x8000 B9
0x8001 FF
0x8002 FF
0x8003 FF
0x8004 FF
0x8005 41
0x8006 80
0x8007 3C
0x8008 08
0x8009 00
0x800A 75
0x800B F9
0x800C C3

Program Counter

0x8000

ECSE 324: Computer Organization

Loader Program

�47

The loader program has 3 responsibilities:
3. recover memory after program execution

• program termination follows a predefined protocol
• loader cleans up* and returns control to user…

…

0x8000 B9
0x8001 FF
0x8002 FF
0x8003 FF
0x8004 FF
0x8005 41
0x8006 80
0x8007 3C
0x8008 08
0x8009 00
0x800A 75
0x800B F9
0x800C C3

…
…
0x8000 00
0x8001 00
0x8002 00
0x8003 00
0x8004 00
0x8005 00
0x8006 00
0x8007 00
0x8008 00
0x8009 00
0x800A 00
0x800B 00
0x800C 00

ECSE 324: Computer Organization

Early Assemblers: Pen, Paper & Books

�48

Convert assembly to binary in memory layout

ECSE 324: Computer Organization

Early Loaders: Keypads & Fingers

�49

Early loader “interfaces” were rudimentary
- many of these loaders weren’t even implemented in software!

ECSE 324: Computer Organization

Early Loaders: Keypads & Fingers

�50

Early loader “interfaces” were rudimentary
- many of these loaders weren’t even implemented in software!

ECSE 324: Computer Organization

Early Loaders: Keypads & Fingers

�51

Early loader “interfaces” were rudimentary
- many of these loaders weren’t even implemented in software!
- user exposed to a simple, calculator-like keypad

• entered address offsets manually
• populated data* manually
• set PC manually

LOW- & HIGH-LEVEL 
CODE INTERACTION

ECSE 324: Computer Organization

Multi-source Object File Generation

�54

So far, we assumed assemblers expected one
source file & generated the object program file

in.asm
[plain text]

out.obj
[binary]

For small programs, this suffices, but why shouldn’t
we try to fit everything in a single main.asm?

ECSE 324: Computer Organization

Multi-source Object File Generation

�55

Ideally, we want the flexibility* to split our
code up across files

in0.asm

out.obj
[binary]

in1.asm

in2.asm in3.asm

ECSE 324: Computer Organization

Multi-source Object File Generation

�56

Here’s a better example:

gfx.asm

game.obj
[binary]

snd.asm

ai.asm net.asm
Some good reasons: specialization/modularity, team work

ECSE 324: Computer Organization

Multi-source Object File Generation

�57

Does the previous two-pass assembler
algorithm work in this multi-input scenario?
- where does it break down?

ECSE 324: Computer Organization

Enter the Linker

�58

To solve this problem, we need to introduce
another tool: the linker
- a linker works in tandem with an assembler

???

ECSE 324: Computer Organization

Enter the Linker

�59

How does the output of the assembler (i.e.,
the input to the linker) need to change?
How does the linker process this output to
generate the final object program?

???

ECSE 324: Computer Organization

Enter the Linker

�60

How does the output of the assembler (i.e.,
the input to the linker) need to change?
How does the linker process this output to
generate the final object program?

???

ECSE 324: Computer Organization

Assembling Multiple Source Files

�61

First, we assemble source files separately
- unlike the 1-source file case, the assembler

may come across external references that
are in another source file

???

ECSE 324: Computer Organization

gfx.asm

Assembling Multiple Source Files

�62

We need to deal with the fact that external
references may not be resolved during a first (or
second) pass through any single source file

snd.asm

ECSE 324: Computer Organization

Assembling Multiple Source Files

�63

So, now, an assembler has more responsibilities:
- follow the original two-pass process to generate:

• memory mapped binary object content
• an exportable symbol table
• a list of externally unresolved references

gfx.asm

ECSE 324: Computer Organization �64

- follow the original two-pass process to generate:
• memory mapped binary object content
• an exportable symbol table
• a list of externally unresolved references

Memory Address OP Code/Data
0x00
0x03
0x04
0x06
0x08

Object Program Memory Map

Symbol Name Symbol Value

Symbol Table
External Reference Name

External References
gfx.asm

ECSE 324: Computer Organization �65

- follow the original two-pass process to generate:
• memory mapped binary object content
• an exportable symbol table
• a list of externally unresolved references

Memory Address OP Code/Data
0x00
0x03
0x04
0x06
0x08

Object Program Memory Map

Symbol Name Symbol Value
loop

Symbol Table
External Reference Name

External References

ECSE 324: Computer Organization �66

- follow the original two-pass process to generate:
• memory mapped binary object content
• an exportable symbol table
• a list of externally unresolved references

Memory Address OP Code/Data
0x00
0x03
0x04
0x06
0x08

Object Program Memory Map

Symbol Name Symbol Value
loop 0x00

Symbol Table
External Reference Name

External References

ECSE 324: Computer Organization �67

- follow the original two-pass process to generate:
• memory mapped binary object content
• an exportable symbol table
• a list of externally unresolved references

Memory Address OP Code/Data
0x00 CDFFFF
0x03
0x04
0x06
0x08

Object Program Memory Map

Symbol Name Symbol Value
loop 0x00

Symbol Table
External Reference Name

External References

ECSE 324: Computer Organization �68

- follow the original two-pass process to generate:
• memory mapped binary object content
• an exportable symbol table
• a list of externally unresolved references

Memory Address OP Code/Data
0x00 CDFFFF
0x03
0x04
0x06
0x08

Object Program Memory Map

Symbol Name Symbol Value
loop 0x00

Symbol Table
External Reference Name

External References

ECSE 324: Computer Organization �69

- follow the original two-pass process to generate:
• memory mapped binary object content
• an exportable symbol table
• a list of externally unresolved references

Memory Address OP Code/Data
0x00 CDFFFF
0x03 DE
0x04
0x06
0x08

Object Program Memory Map

Symbol Name Symbol Value
loop 0x00

Symbol Table
External Reference Name

External References

ECSE 324: Computer Organization �70

- follow the original two-pass process to generate:
• memory mapped binary object content
• an exportable symbol table
• a list of externally unresolved references

Memory Address OP Code/Data
0x00 CDFFFF
0x03 DE
0x04 FA??
0x06
0x08

Object Program Memory Map

Symbol Name Symbol Value
loop 0x00

Symbol Table
External Reference Name

External References

ECSE 324: Computer Organization �71

- follow the original two-pass process to generate:
• memory mapped binary object content
• an exportable symbol table
• a list of externally unresolved references

Memory Address OP Code/Data
0x00 CDFFFF
0x03 DE
0x04 FA??
0x06
0x08

Object Program Memory Map

Symbol Name Symbol Value
loop 0x00

Symbol Table
External Reference Name

someExternalFunction

External References

ECSE 324: Computer Organization �72

- follow the original two-pass process to generate:
• memory mapped binary object content
• an exportable symbol table
• a list of externally unresolved references

Memory Address OP Code/Data
0x00 CDFFFF
0x03 DE
0x04 FA??
0x06
0x08

Object Program Memory Map

Symbol Name Symbol Value
loop 0x00

Symbol Table
External Reference Name

someExternalFunction

External References

ECSE 324: Computer Organization �73

- follow the original two-pass process to generate:
• memory mapped binary object content
• an exportable symbol table
• a list of externally unresolved references

Memory Address OP Code/Data
0x00 CDFFFF
0x03 DE
0x04 FA??
0x06 FB00
0x08

Object Program Memory Map

Symbol Name Symbol Value
loop 0x00

Symbol Table
External Reference Name

someExternalFunction

External References

ECSE 324: Computer Organization �74

- follow the original two-pass process to generate:
• memory mapped binary object content
• an exportable symbol table
• a list of externally unresolved references

Memory Address OP Code/Data
0x00 CDFFFF
0x03 DE
0x04 FA??
0x06 FB00
0x08

Object Program Memory Map

Symbol Name Symbol Value
loop 0x00

Symbol Table
External Reference Name

someExternalFunction

External References

ECSE 324: Computer Organization �75

- follow the original two-pass process to generate:
• memory mapped binary object content
• an exportable symbol table
• a list of externally unresolved references

Memory Address OP Code/Data
0x00 CDFFFF
0x03 DE
0x04 FA??
0x06 FB00
0x08 80

Object Program Memory Map

Symbol Name Symbol Value
loop 0x00

Symbol Table
External Reference Name

someExternalFunction

External References

ECSE 324: Computer Organization �76

- follow the original two-pass process to generate:
• memory mapped binary object content
• an exportable symbol table
• a list of externally unresolved references

Memory OP Code/
0x00 CDFFFF
0x03 DE
0x04 FA??
0x06 FB00
0x08 80

Symbol
Name

Symbol
Value

loop 0x00

External Names
someExternalFunction

gfx.obj
[binary]

ECSE 324: Computer Organization �77

- follow the original two-pass process to generate:
• memory mapped binary object content
• an exportable symbol table
• a list of externally unresolved references

Memory Address OP Code/Data
0x00
0x03
0x05

Object Program Memory

Symbol Name Symbol Value

Symbol Table

External Reference Name
External References

snd.asm

ECSE 324: Computer Organization �78

- follow the original two-pass process to generate:
• memory mapped binary object content
• an exportable symbol table
• a list of externally unresolved references

Memory Address OP Code/Data
0x00
0x03
0x05

Object Program Memory

Symbol Name Symbol Value
someExternalFunction

Symbol Table

External Reference Name
External References

ECSE 324: Computer Organization �79

- follow the original two-pass process to generate:
• memory mapped binary object content
• an exportable symbol table
• a list of externally unresolved references

Memory Address OP Code/Data
0x00
0x03
0x05

Object Program Memory

Symbol Name Symbol Value
someExternalFunction 0x00

Symbol Table

External Reference Name
External References

ECSE 324: Computer Organization �80

- follow the original two-pass process to generate:
• memory mapped binary object content
• an exportable symbol table
• a list of externally unresolved references

Memory Address OP Code/Data
0x00
0x03
0x05

Object Program Memory

Symbol Name Symbol Value
someExternalFunction 0x00

Symbol Table

External Reference Name
External References

ECSE 324: Computer Organization �81

- follow the original two-pass process to generate:
• memory mapped binary object content
• an exportable symbol table
• a list of externally unresolved references

Memory Address OP Code/Data
0x00 75038A
0x03
0x05

Object Program Memory

Symbol Name Symbol Value
someExternalFunction 0x00

Symbol Table

External Reference Name
External References

ECSE 324: Computer Organization �82

- follow the original two-pass process to generate:
• memory mapped binary object content
• an exportable symbol table
• a list of externally unresolved references

Memory Address OP Code/Data
0x00 75038A
0x03
0x05

Object Program Memory

Symbol Name Symbol Value
someExternalFunction 0x00

Symbol Table

External Reference Name
External References

ECSE 324: Computer Organization �83

- follow the original two-pass process to generate:
• memory mapped binary object content
• an exportable symbol table
• a list of externally unresolved references

Memory Address OP Code/Data
0x00 75038A
0x03 CD7C
0x05

Object Program Memory

Symbol Name Symbol Value
someExternalFunction 0x00

Symbol Table

External Reference Name
External References

ECSE 324: Computer Organization �84

- follow the original two-pass process to generate:
• memory mapped binary object content
• an exportable symbol table
• a list of externally unresolved references

Memory Address OP Code/Data
0x00 75038A
0x03 CD7C
0x05

Object Program Memory

Symbol Name Symbol Value
someExternalFunction 0x00

Symbol Table

External Reference Name
External References

ECSE 324: Computer Organization �85

- follow the original two-pass process to generate:
• memory mapped binary object content
• an exportable symbol table
• a list of externally unresolved references

Memory Address OP Code/Data
0x00 75038A
0x03 CD7C
0x05 80

Object Program Memory

Symbol Name Symbol Value
someExternalFunction 0x00

Symbol Table

External Reference Name
External References

ECSE 324: Computer Organization �86

- follow the original two-pass process to generate:
• memory mapped binary object content
• an exportable symbol table
• a list of externally unresolved references

Symbol Name Symbol Value

someExternalFu
nction

0x00
Memory
Address

OP Code/
Data

0x00 75038A

0x03 CD7C

0x05 80
External Names

snd.obj
[binary]

ECSE 324: Computer Organization

Assembling Multiple Source Files

�87

After separately assembling each source file,
we forward individual object files to the linker
- each one stores (potentially incomplete) memory

maps, symbol tables, and external references

Symb
ol

Symb
ol

some
Exter
nalFu

0x00

External
Names

snd.obj

Symbol Symbol
someExte
rnalFuncti

0x00

External Names

gfx.obj

ECSE 324: Computer Organization

Enter the Linker

�88

Can you guess what the linker does with these?
- any missing references across object files need

to be resolved

Symb
ol

Symb
ol

some
Exter
nalFu

0x00

External
Names

snd.obj

Symbol Symbol
someExte
rnalFuncti

0x00

External Names

gfx.obj

ECSE 324: Computer Organization

Enter the Linker

�89

Can you guess what the linker does with these?
- first, we combine the object binaries into a single

sequential memory map

Symb
ol

Symb
ol

some
Exter
nalFu

0x00

External
Names

snd.obj

Symbol Symbol
someExte
rnalFuncti

0x00

External Names

gfx.obj

program.map

ECSE 324: Computer Organization

Enter the Linker

�90

Can you guess what the linker does with these?
- we’ll eventually need a globally consistent (relative)

memory map across individual object memory maps

Symb
ol

Symb
ol

some
Exter
nalFu

0x00

External
Names

snd.obj

Symbol Symbol
someExte
rnalFuncti

0x00

External Names

gfx.obj

program.map

ECSE 324: Computer Organization

Enter the Linker

�91

Then, the linker identifies missing references…

Symbol Name Symbol Value

someExternalFu
nction

0x00
Memory
Address

OP Code/
Data

0x00 75038A

0x03 CD7C

0x05 80 External Names

snd.obj
Memory OP Code/

0x00 CDFFFF
0x03 DE
0x04 FA??
0x06 FB00
0x08 80

Symbol
Name

Symbol
Value

loop 0x00

External Names
someExternalFunction

gfx.obj

ECSE 324: Computer Organization

Enter the Linker

�92

Then, the linker identifies missing references…

Symbol Name Symbol Value

someExternalFu
nction

0x00
Memory
Address

OP Code/
Data

0x00 75038A

0x03 CD7C

0x05 80 External Names

snd.obj
Memory OP Code/

0x00 CDFFFF
0x03 DE
0x04 FA??
0x06 FB00
0x08 80

Symbol
Name

Symbol
Value

loop 0x00

External Names
someExternalFunction

gfx.obj

ECSE 324: Computer Organization

Enter the Linker

�93

… searches other symbol tables for it…

Symbol Name Symbol Value

someExternalFu
nction

0x00
Memory
Address

OP Code/
Data

0x00 75038A

0x03 CD7C

0x05 80 External Names

snd.obj
Memory OP Code/

0x00 CDFFFF
0x03 DE
0x04 FA??
0x06 FB00
0x08 80

Symbol
Name

Symbol
Value

loop 0x00

External Names
someExternalFunction

gfx.obj

ECSE 324: Computer Organization

Enter the Linker

�94

Symbol Name Symbol Value

someExternalFu
nction

0x00
Memory
Address

OP Code/
Data

0x00 75038A

0x03 CD7C

0x05 80 External Names

snd.obj
Memory OP Code/

0x00 CDFFFF
0x03 DE
0x04 FA3F
0x06 FB00
0x08 80

Symbol
Name

Symbol
Value

loop 0x00

External Names
someExternalFunction

gfx.obj

- after processing, any
remaining missing
external references
are reported as errors

… and replaces it with the mapped (offset) address
offset = 3F

ECSE 324: Computer Organization

Modularity

�95

One benefit of using separate source files is the
ability to group different functional units together
- often, many different applications can benefit from

similar (if not identical) functionalities
• advanced math routines
• I/O and file processing routines
• image and sound processing routines
• networking routines

- here, it would be unfortunate/foolish to have to
reinvent the wheel every time

ECSE 324: Computer Organization

Modularity

�96

In the previous example, we assumed that every
intermediate object binary is consumed
- once, and
- only for the object program that is being linked
For example, imaging writing two games:

pacman.obj
[binary]

dkong.obj
[binary]

ECSE 324: Computer Organization

Modularity

�97

You can imagine that these two games could have a
significant overlap in their functionality:
- graphics processing
- sound processing
- keypad processing
In fact, perhaps they only differ in their game logic
- here, it would be ideal to reuse code across programs

gfx.asm snd.asm key.asmpacman.asm
pacman.obj

[binary]

ECSE 324: Computer Organization

Modularity

�98

You can imagine that these two games could have a
significant overlap in their functionality:
- graphics processing
- sound processing
- keypad processing
In fact, perhaps they only differ in their game logic
- here, it would be ideal to reuse code across programs

dkong.obj
[binary]

pacman.obj
[binary]

gfx.asm snd.asm key.asmpacman.asm dkong.asm

ECSE 324: Computer Organization

Libraries
We can package these shared routines into a library

dkong.obj
[binary]

pacman.obj
[binary]

gfx.asm snd.asm key.asmpacman.asm dkong.asm

Symb
ol

Symb
ol

some
Exter
nalFu

0x00

External
Names

snd.obj

Symbol Symbol
someExte
rnalFuncti

0x00

External Names

gfx.obj

Specifically, assemble + export: memory map, symbol and
external reference tables for each object file

Symbol Symbol
someExte
rnalFuncti

0x00

External Names

key.obj

utilities.lib

ECSE 324: Computer Organization

High-level Programming Languages

�100

Assembly language coding requires a thorough
understanding of the underlying CPU architecture
- pros:

• understanding the implications of executed code
• ability to fine-tune low-level behavior

- cons:
• iteration time
• barrier to entry
• propensity for human error

ECSE 324: Computer Organization

High-level Programming Languages

�101

High-level programming languages reduce
the need for such architecture-specific
knowledge
- reduces the cost of cross-platform

development
- decreases iteration time
- can simplify the design of larger, more

complicated algorithms

ECSE 324: Computer Organization

The Compiler

�102

A compiler converts a high-level source file (or files)
from the high-level language to assembly language
- after which, it invokes the assembler to generate object files

code.lang

ECSE 324: Computer Organization

The Compiler

�103

A compiler converts a high-level source file (or files)
from the high-level language to assembly language
- after which, it invokes the assembler to generate object files
- after which, the linker generates the final object program

Symb
ol

Symb
ol

some
Exter
nalFu

0x00

External
Names

Symbol Symbol
someExte
rnalFuncti

0x00

External Names

ECSE 324: Computer Organization

High-level Programming

�104

High-level language compilers typically allow code
to be split up across files/modules, too
- external references need to be explicitly identified for use

inside a separate module*
- compiler will resolve names, external variable and

subroutine addresses, at compile-time
• except for subroutines & variables in external libraries
• these are resolved at link-time

Compilers can also handle tedious tasks, like stack
frame management for subroutines
- language features may add type and range checking, etc.

ECSE 324: Computer Organization

Compiler Optimizations

�105

“Premature optimization is the root of all evil.”
— Donald Knuth

Compiled assembler code makes no guarantee on size nor
computational efficiency
- for a long time, the battle between hand-optimized assembler &

compiler-generated assembler waged on

Automatic compiler optimization strategies work well
- platform-dependent and independent optimizations possible, even

on heterogeneous compute architectures!
- active research area

COMPOSED SOFTWARE SOLUTIONS

ECSE 324: Computer Organization

Multi-language Software Development
- Compilers convert high-level source to assembler

- Assemblers assemble source files to object data

- Linkers combine assembled object data into the final
object program machine data

• linkers may also draw from pre-assembled & packaged
library binary object data archives

Conceptually, nothing prevents us from:

- mixing & matching high-level + assembler source

- using many different high-level languages

ECSE 324: Computer Organization

Multi-language Software Development

�109

code.c

code.pas

… …

co
mpile

r

asse
mbler

Sy Sy
so 0x0

External

Sy Sy
so 0x0

External

Sy Sy
so 0x0

External

Sy Sy
so 0x0

External

Sy Sy
so 0x0

External

Sy Sy
so 0x0

External

co
de

.a
sm Sy Sy

so 0x0

External

Sy Sy
so 0x0

External

Sy Sy
so 0x0

External

ECSE 324: Computer Organization

Multi-language Software Development

�110

S S
so
m

0x
00

Extern

Sym Sym
som 0x00

External

library.lib

…

co
mpile

r

asse
mbler

Sy Sy
so 0x0

External

Sy Sy
so 0x0

External

Sy Sy
so 0x0

External

co
de

.a
sm Sy Sy

so 0x0

External

Sy Sy
so 0x0

External

Sy Sy
so 0x0

External

lin
ker

ECSE 324: Computer Organization

Multi-language Software Development

High-level languages can call assembler routines and
vice-versa
- when calling assembler from high-level languages:

• assembler code needs to respect the same subroutine
calling conventions as the high-level language

• high-level languages can “access” lower-level control

- here, relying on separate assembler source listings can
sometimes become cumbersome

• many compilers support low-lever inlining facilities

ECSE 324: Computer Organization

Inlined Assembler Code

ECSE 324: Computer Organization

Inlined Assembler Code

ECSE 324: Computer Organization

Inlined Assembler Code

ECSE 324: Computer Organization

Multi-language Software Development
High-level languages can call assembler routines and vice-
versa
- when calling high-level routines from assembler:

• need to match compiler-implemented subroutine calling
mechanism/convention

- pre- and post-conditions must match assembly- and
calling-language conventions

• stack and/or heap

• condition bits/flags

• register post-conditions

ECSE 324: Computer Organization

Debugging Strategies & Tools

�116

Imagine:
- you’ve implemented your algorithm
- you’ve worked through compile errors (and warnings)
- you’ve worked through link errors
- you run your code and… it doesn’t work

• unexpected (“incorrect”) output
• program crash
• infinite loop
• etc.

How do you debug your problem?

ECSE 324: Computer Organization

Debugging Strategies & Tools

�117

List of some debugging strategies/techniques:
- print statements

• printing tags to highlight execution flow
- loop index variables & branch conditions

• printing final and intermediate variable values
- assertion statements
- unit tests

• important to test both valid and invalid conditions

Each of these strategies requires (re-)building &
(re-)running your application*

ECSE 324: Computer Organization

Enter the Debugger

�118

The debugger is a software tool that allows you to debug
your application while it runs
- a more active way to track down and solve bugs

- debuggers sophisticate the process of bug tracking beyond
earlier passive, build-dependent strategies

Concretely, a debugger allows you to:
- stop the execution of your program at any point
- examine (and modify!) the contents of registers, variables, and

memory at this point

- resume execution until another point of interest

ECSE 324: Computer Organization

Enter the Debugger

�119

To expose this advanced debugging functionality,
debuggers leverage two key facilities:
- augmented build-generated object data

• exposed through (advanced) software development tools

- execution-level control

• exposed through (advanced) OS & HW facilities

ECSE 324: Computer Organization

Debugger — Debug Builds

�120

Modern development toolchains (i.e., cross-compilers, compilers,
assemblers, linkers) allow:
- mapping high-level code to its associated compiled/generated assembly code

- embedding object binaries with debug meta-data

• explicit function and variable sizes and layout info

• source-matched function and variable names

Debug builds are, as a result:
- less efficient* and less compact

ECSE 324: Computer Organization

Debugger — OS & HW Facilities

�121

The ability of stopping, resuming, and modifying machine code and
memory during execution requires more than just advanced dev tools

The OS and underlying HW platform must allow the disruption of
normal execution protocols
- for example, the program counter is no longer the sole driving force of

what gets executed next

A special interrupt-based HW feature, called trace mode, is exposed
to the OS (who, in turn, exposes it to the debugger) to allow runtime
debugging

ECSE 324: Computer Organization

Debugger — Trace Mode

�122

When processors run in trace mode, they fire an interrupt after the
execution of each instruction
- the OS exposes an associated interrupt-handler
- control flow is then relinquished to the debugger

• the user can now execute debugger commands to:
- view and edit memory (including variables)
- view and edit registers and control flags

• this interrupt is disabled during debugging
• a return-from-interrupt is posted once the user commands regular

execution flow continuation (which subsequently re-enables the interrupt)

ECSE 324: Computer Organization

Debugger — Breakpoints

�123

The compiler/assembler and debugger allow source-
and instruction-level breakpoints to inserted in code
- a similar interrupt-based facility is signaled upon the

execution of an instruction at a breakpoint
- control flow is once again relinquished to the debugger

Advanced development tools will allow for complex
conditional breakpoints to be defined throughout
the code

ECSE 324: Computer Organization

Debugger — Breakpoints

�124

ECSE 324: Computer Organization

Debugger — Breakpoints

�125

ECSE 324: Computer Organization

Debugger — Breakpoints

�126

ECSE 324: Computer Organization

State-of-the-art Debuggers

�127

A major differentiating technology between mature and
immature software- and hardware-platforms is the quality
and capabilities of their development toolchains
- not just the compilers, assemblers and linkers

- debuggers play a large role here*

Debugger development has remained an open area of
applied research
- accommodating for more complex platforms

- more advanced debugging facilities*

ECSE 324: Computer Organization

The Operating System

�128

At a high-level, the OS is responsible for:
- coordinating the execution of (potentially many) user-land

applications
- managing the resources exposed to users

• (equitable?) sharing of HW resources
- managing memory and I/O requests

• providing the illusion* of parallel execution
- hiding latency from dependencies outside the processor

(e.g., RAM, HD, etc.)

The loader is a component* of the OS

ECSE 324: Computer Organization

The Boot-strapping Process

�129

What happens when you boot up your laptop?
- Basic Input-Output System (BIOS) runs

• initializes the system and sets the PC at a pre-determined starting
point in memory

- the bootloader
- Bootloader most-likely boots your OS
- Sophisticated OSes are huge; during OS boot:

- control of resources gradually relinquished to the OS (i.e.,
daemons are deployed at this point)

- OS progressively loaded until user code is allowed to run (OS is
“in charge”, at this stage)

ECSE 324: Computer Organization

Life as an Application on an OS

�130

Life is hard for an application running on an OS
- you’re allowed only direct access to a limited subset of the

resources on the platform

- the OS decides when and how to dole out:
• CPU processing access; this is is time-shared between

applications

• access to external resources (e.g., peripherals, disk);
managed using request-based mechanisms

ECSE 324: Computer Organization

Life as an Application on an OS

�131

ECSE 324: Computer Organization

Life as an Application on an OS

�132

In this example, it’s clear that system resources
are not managed to their full potential
- CPU is not at 100% utilization

- I/O devices are not at 100% utilization

ECSE 324: Computer Organization

Life as an Application on an OS

�133

Multitasking (a.k.a. multiprogramming) OSes
better manage these inefficiencies by scheduling
resource utilization across applications
- latency-hiding can happen across scales

ECSE 324: Computer Organization

Life as an Application on an OS

�134

ECSE 324: Computer Organization

Life as an Application on an OS

�135

ECSE 324: Computer Organization

Life as an Application on an OS

�136

ECSE 324: Computer Organization

Life as an Application on an OS

�137

ECSE 324: Computer Organization

Conclusion

�138

A hardware platform is only as useful as the software that
is implemented on it
- enabling “good” software is just as important (or more

important?) as enabling “good” hardware
The development toolchain is an important piece of this
ecosystem
- interaction of low- and high-level languages
- interaction across abstraction layers

• HW — OS — User applications

