ECSE 324
COMPUTER ORGANIZATION

SOFTWARE — ASSEMBLERS, LINKERS,
COMPILERS & DEBUGGERS

Prof. Christophe Dubach

Original slides from: Prof. Derek Nowrouzezahrai

Outline

You've discussed the behavior of assembly
instructions and the operations they can perform

- the process of implementing an algorithm using
assembly instructions should be clear at this stage

We will discuss the pragmatics of how to program
and run algorithms on a computing platform

T McGill ECSE 324: Computer Organization 2

We will discuss the pragmatics of how to program
and run algorithms on a computing platform

- from assembly to machine instructions

00000030 BOFFFFFFFF

; 2str_count:
; Counts a zero-terminated ASCII string to determine its size

; in: eax = start address of the zero terminated string
; out: ecx = count = the length of the string 00000035 41
zstr_count: ; Entry point 00000036 803C0A800
mov ecx, -1 ; Init the loop counter, pre-decrement
to compensate for the increment
. Loop:
inc ecx ; Add 1 to the loop counter PPPOBO3A 75F9

cmp byte [eax + ecx], @ ; Compare the value at the string's
; [starting memory address Plus the
loop offset], to zero
jne .loop ; If the memory value is not zero,
then jump to the label called '.loop',
; otherwise continue to the next line

.done:
; We don't do a final increment,
; because even though the count is base 1,
; we do not include the zero terminator in the
; string's length
ret ; Return to the calling program 0000003C C3

T McGill ECSE 324: Computer Organization 3

We will discuss the pragmatics of how to program
and run algorithms on a computing platform

mov ecx, -1

inc ecx
cmp byte [eax + ecx], ©

int len = strlen(str);

jne .loop

(i =03 i< len; i++){

ret

T McGill ECSE 324: Computer Organization

00000030 BOFFFFFFFF

00000035 41
00000036 803C0800

0000BO3A 75F9

0000003C C3

We will discuss the pragmatics of how to program
and run algorithms on a computing platform

Administrator: C:\Windows\system32\CMD.e

Microsoft Windows [Uersion 6.1.76011]
Copyright {(c> 2009 Microsoft Corporation. All rights reserved.

C:\Windows\system32>whoami /user

USER INFORMATION

Run X

‘ Type the name of a program, folder, document, or Internet
— resource, and Windows will open it for you.

Open: C:\Users\Raymond\nircmd.exe elevate cmd.exe v

0K Cancel Browse...

T McGill ECSE 324: Computer Organization S

Assembly Language

Assembly is a convenient* abstraction designed
for human creation and consumption

- computers don't naturally "speak” assembly

Before an algorithm, implemented in assembly,
can be executed on a computer it must be:

- validated for correctness*

- converted to a form consumable by a computer

e properly ordered machine code

T McGill ECSE 324: Computer Organization 6

Enter the Assembler

The assembler is a software tool that:

- verifies assembly code listings for validity, and

- converts valid assembly opcodes and operands
into their associated machine code values

- computes a memory layout for the machine code

; zZstr_count:
; Counts a zero-terminated ASCII string to determine its size

; in:
; out:

mov

inc
cmp

jne

ret

"= McGill

ecx, -1

ecx
byte [eax + ecx], ©

. Loop

eax = start address of the zero terminated string
ecx = count = the length of the string

; Entry point
; Init the loop counter, pre-decrement
; to compensate for the increment

; Add 1 to the loop counter

; Compare the value at the string's

; [starting memory address Plus the

; loop offset], to zero

; If the memory value is not zero,

; then jump to the label called '.loop',
; otherwise continue to the next line

; We don't do a final increment,

; because even though the count is base 1,

; we do not include the zero terminator in the
; string's length

; Return to the calling program

ECSE 324: Computer Organization

00000030 BOFFFFFFFF

00000035 41
00000036 803C0800

00000O3A 75F9

0000003C C3

Assembling Source Code

The assembler accepts assembly source listings,
stored in an input text file, as input...

zstr_count:

Counts a zero-terminated ASCII string to determine its size
in: eax = start address of the zero terminated string
out: ecx = count = the length of the string

e S S S M

zstr_count: ; Entry point
mov ecx, -1 ; Init the loop counter, pre-decrement
; to compensate for the increment
. Loop:
inc ecx Add 1 to the loop counter

cmp byte [eax + ecx], © Compare the value at the string's
[starting memory address Plus the

loop offset], to zero

Se Se Se Se S S M.

jne .loop If the memory value is not zero,
then jump to the label called '.loop',
otherwise continue to the next line
.done:
; We don't do a final increment,
; because even though the count is base 1,
; we do not include the zero terminator in the
; string's length
ret ; Return to the calling program

T McGill ECSE 324: Computer Organization 3

Assembling Source Code

... recognizes individual assembly instruction

mnemonics (or doesn’t!)...

- interprets addressing modes and data operands

mov ecx, -1

inc ecx
cmp byte [eax + ecx], @

jne .loop

ret

"= McGill

ECSE 324: Computer Organization

Assembling Source Code

... converts them to their associated machine OP
binary (or equivalent) codes...

BOFFFFFFFF
41
mov ecx, -1 803C0800
inc ecx
cmp byte [eax + ecx], © 75F8S
jne .loop
C3

ret

T McGill ECSE 324: Computer Organization 10

Assembling Source Code

... lays out the OP codes in (relative) memory...

- usually in a sequential block of memory

- where do empty lines in the layout come from?

mov ecx, -1

inc ecx
cmp byte [eax + ecx], ©

jne .loop

ret

= McGill

ECSE 324: Computer Organization

00000030 BOFFFFFFFF

00000035 41
00000036 803C0B00

0000BO3A 75F9

0000003C C3

11

OP Code Size

OP codes might not all occupy the same amount
of memory! (it does for ARM but not for X86)

- varying number of data arguments

- compactness of addressing modes

Op Code Operand
]

] { A !

LD A, O1H Assemble 00111110 00000001

;‘ Same thing in hexadecimal

3E 01
RAM __
3E O000H Memory Location
01 - ADDRESS

T McGill ECSE 324: Computer Organization 12

Copyright © John Philip Jones

Assembling Source Code

... recognizes data directives and labels ...
- allocates and populates space appropriately

- populates symbol table with label names & locations

00000030

00000035
00000036

zstr_count:

. Loop:
0000003A

.done:

0000003C

T McGill ECSE 324: Computer Organization 13

Assembling Source Code

... searches and replaces symbolic entries with
their associated values from the symbol table

The assembler outputs an object program to file

00000030 BOFFFFFFFF

’
; Zstr_count:

; Counts a zero-terminated ASCII string to determine its size
; in: eax = start address of the zero terminated string
; out: ecx = count = the length of the string

00000035 41
fr count: ; Entry point 00000036 803C0A800
mov ecx, -1 ; Init the loop counter, pre-decrement
; to compensate for the increment
. loop:
inc ecx ; Add 1 to the loop counter
cmp byte [eax + ecx], @ ; Compare the value at the string's

0000RO3A 75F9

; [starting memory address Plus the
; loop offset], to zero
jne .loop ; If the memory value is not zero,
; then jump to the label called '.loop',
; otherwise continue to the next line

; We don't do a final increment,

; because even though the count is base 1,

; we do not include the zero terminator in the
; string's length

; Return to the calling program

0000003C C3

in.asm out.obj

[plain text] [binary]

We say that an assembler assembles to object code

T McGill ECSE 324: Computer Organization 14

Early Assemblers: Pen, Paper & Books

Today, assemblers are programs that we
execute on computers

- using computers to program computers

In the past, humans had to manually assemble
their own code

- working through this process can be helpful

T McGill ECSE 324: Computer Organization 15

Early Assemblers: Pen, Paper & Books

Type your assembly code in a text editor

T McGill ECSE 324: Computer Organization 16

Early Assemblers: Pen, Paper & Books
e Write your assembly code ina-textediter
on paper

TSR seb_up j lndiahse ports Lo |y, H L3480 /Y /WT'/

(i tom

LOA 4RSE 5 Show mede
RE o\‘s{,,l..ﬁ o as SE (Selad) Lp B/ .ﬂ05 S /)’\’TS
gsﬂ%“t);vmik;’ﬂwﬁbbzﬂw _ orrows show whe re |Umps are Qoirg (no lokals 1
Y A a3aukel Balibel;
ea: ﬁt ollemle ’ > Lp A OY*‘Q) GET ANT X
cme #46- d B:\ua@us;mg mmw C’,L 4“6 ’q.o Sﬂ?t‘r()(?
~S§LHMP | st iset
522 ;ffk‘“ FIRNZ ¥l Fame TR vy
. LoA, (Y +l) GE€7 AavT Y
DA #2AC ; Shavs fivode pés : T '
TR disgley 5 AC (Mb hlal) ce, 'H SAERS SPTE Y T
TR L st Lol 5 Find B foret laled I Tamf 1F YESL
Jh Meagure ; Measwre Us
g T 1 2A0P 1Y PE naOEES 1Y
LDA #2FD ; Show mede as :
T diyhe PO (Fid it on Ok PINZ 16 <00 P
IstLLo,e J Wad unld B i pressed Réf FIN
KSR st W - au, -\ AASW I i 1 l 12re. ant _{ wiri ot urf ‘i"}‘.',’ﬁ]ﬂ(j ouT .,’,m].[‘;
= =N) ' leaspwie wuel o —
T\:—>LQ-A-#F&) | =

17

T McGill ECSE 324: Computer Organization

Early Assemblers: Pen, Paper & Books

Sequentially replace assembler mnemonics (and
data/addressing operands) with their binary
machine OP codes

- How? Read The Manual...

AD D Lw Add Literal and W

Syntax: | label | ADDLW Kk

Operands: 0<k=255

Operation: (W)+k =W

Status Affected: C,DC,Z

Encoding: 11 111x | kkkk kkkk

Description: The contents of the W register are added o the eight bit literal 'k’ and the result is

placed in the W register.

T McGill ECSE 324: Computer Organization 18

Early Assemblers: Pen, Paper & Books

Sequentially replace assembler mnemonics (and
data/addressing operands) with their binary

machine OP codes

2¢ () ¢3 TSR S&t_wp) lm:ualue, Fork_s
Aq SE LOA 4RSE 5 Show mode
26 94 ¢3 Tk A"‘F’Lﬁ o as SE (Selad)
2¢ 9, 3 J5R azr_s% 5 Wak for Aweh‘mw
Gl. A cne %A , Az oauk colidemle
Fé @b BEQ aubo-caliemle
4 ¢B CmP #4B 1 Be uﬂ;n using dala in Mesmery
0F FS BNE M_l@q R
Fé 3D REQ 4ot
A9 AC LDA #2AC 5 Shove made as
26 26 43 TR A'«% 5 RC (A calibmle)
26 3 g2 BR LG fusb el 5 Fad Yu [ret laled
2¢ M $2 JoR W..%bw /‘Mmam s W}L
AQ FD DA #2FD , Shew mede as
26 o5 43 IR oba‘?j.,ﬂ ; FO {iFuids ith on Diskivnee)
) J Wt waldh 8 s W“L

2¢ ¢ 43 JsR WL_L«—_G

26 DE g2 ISR Measire . Lrimdsdn) Measwre Bhe wnd mn duslomee

19

T McGill ECSE 324: Computer Organization

Early Assemblers: Pen, Paper & Books

Perform (manual) relative memory layout

Maw Lovp
P24 26 4 ¢35 TSR seb_yp j Indiahse ports
sart $24 3 Aq SE LOA 4RSE ; :Show made

$248 2¢ g4 #3 TR &;PLG o as SE (Selad)

b«Lk% $2p 9 2 A 43 R ey) Wak for Aor B b be pressed
¢248 €1 ¢A cme #BA 5 A= auk colidemle
$266 D Fé g BEQ aubo- calillmbe
b 24F 4 ¢B CMP 4B 1 B o0 using daba in Memery
g2u 0F FS BNE Wk&g %w R
213 Fé 3D 8EQ g0t
- cldonte: 215 A3 AC LDA #2AC 5 Shove made as
$217 24 26 43 TR ouspl«j 5 RC (A calibmle)
F20 26 4 TR Lol bkl 3 Fad Vel Lol
#210 2¢ BC P2 TR W—-\.u\aﬁ‘h /f"lw.awe s W
F22¢ A9 FD LOA #2FD , Show mede as
$222 26 9 ¢35 TR digley ; FO {iFuids ith on Diskivnee)
$225 2¢ ¢ 43 ISR wed,_ |or-8 J Wak wnldh B s ppessed

$229 26 DE g2 sk MEASWAE - W — N 5 Measre b omel o0 dustomee

T McGill ECSE 324: Computer Organization

20

Two-pass Assemblers

An important question arises during assembly,
when substituting values from the symbol table:

- what happens if we encounter a label/name without
an existing symbol table entry (a forward reference)?

. Loop1l:

ecx
byte [eax + ecx]

e [T

ret

- what's the problem here? how would you solve it?

T McGill ECSE 324: Computer Organization 21

Two-pass Assemblers

Two-pass assemblers solve this problem by:

1. making an initial pass: converting mnemonics and
building the symbol table when you can

. Loopl:

ecx
byte [eax + ecx]

jne .loop2
. Loop2:

ret

T McGill ECSE 324: Computer Organization 22

1. making an initial pass: converting mnemonics and
building the symbol table when you can

Object Program Memory Map

. Loopl:
Memory Address OP Code/Data
ecx
0x00 byte [eax + ecx]
O0x01 jne .loop2
0x02
. LOOp2:
0x03
ret
Symbol Table
Symbol Name Symbol Value

T McGill ECSE 324: Computer Organization 23

1. making an initial pass: converting mnemonics and
building the symbol table when you can

Object Program Memory Map

. Loop1l:
Memory Address OP Code/Data
ecXx
0x00 byte [eax + ecx]
0x01 jne .loop2
0x02
. LOOp2:
0x03
ret
Symbol Table
Symbol Name Symbol Value
loop1

T McGill ECSE 324: Computer Organization 24

1. making an initial pass: converting mnemonics and
building the symbol table when you can

Object Program Memory Map

. Loop1l:
Memory Address OP Code/Data
ecXx
0x00 byte [eax + ecx]
0x01 jne .loop2
0x02
. LOOp2:
0x03
ret
Symbol Table
Symbol Name Symbol Value
loop1 0x00

T McGill ECSE 324: Computer Organization 25

1. making an initial pass: converting mnemonics and
building the symbol table when you can

Object Program Memory Map

. Loopl:
Memory Address OP Code/Data
eCXx
0x00 byte [eax + ecx]
O0x01 jne .loop2
0x02
. LOOp2:
0x03
ret
Symbol Table
Symbol Name Symbol Value .as_St.Jme_/g&n:. .
00D 0%00 inc is a 1-byte instruction:
P e 4-bit OP code
 4-bit operand code

T McGill ECSE 324: Computer Organization 26

1. making an initial pass: converting mnemonics and
building the symbol table when you can

Object Program Memory Map

. Loopl:
Memory Address OP Code/Data
eCXx
0x00 3A byte [eax + ecx]
0x01 jne .loop2
0x02
. LOOp2:
Ox03
ret
Symbol Table
Symbol Name Symbol Value .as_St.Jme_/g&n:. .
00D 0%00 inc is a 1-byte instruction:
P e 4-bit OP code
 4-bit operand code

T McGill ECSE 324: Computer Organization 27

1. making an initial pass: converting mnemonics and
building the symbol table when you can

Object Program Memory Map

. Loopl:
Memory Address OP Code/Data
ecx
0x00 3A byte [eax + ecx]
O0x01 jne .loop2
0x02
. LOOp2:
0x03
ret
Symbol Table
Symbol Name Symbol Value assume/given:
loop1 0x00 cmp is a 1-byte instruction

T McGill ECSE 324: Computer Organization 28

1. making an initial pass: converting mnemonics and
building the symbol table when you can

Object Program Memory Map

. Loopl:
Memory Address OP Code/Data
ecx
0x00 3A byte [eax + ecx]
O0x01 7F jne .loop2
0x02
. LOOp2:
0x03
ret
Symbol Table
Symbol Name Symbol Value assume/given:
loop1 0x00 cmp is a 1-byte instruction

T McGill ECSE 324: Computer Organization 29

1. making an initial pass: converting mnemonics and
building the symbol table when you can

Object Program Memory Map

. Loopl:
Memory Address OP Code/Data
eCXx

0x00 3A byte [eax + ecx]
0x01 7F jne .loop2
0x02

. LOOp2:
0x03

ret
Symbol Table
Symbol Name Symbol Value ?S—S‘f‘me—/g'—"e”{ .
00D 0%00 jne is a 1-byte instruction:
P e 4-bit OP code (F)
e 4-bit operand

T McGill ECSE 324: Computer Organization 30

1. making an initial pass: converting mnemonics and
building the symbol table when you can

Object Program Memory Map

. Loopl:
Memory Address OP Code/Data
eCXx

0x00 3A byte [eax + ecx]
0x01 7F jne .loop2
0x02 F?

. LOOp2:
0x03

ret
Symbol Table
Symbol Name Symbol Value ?S—S‘f‘me—/g'—"e”{ .
00D 0%00 jne is a 1-byte instruction:
P e 4-bit OP code (F)
e 4-bit operand

T McGill ECSE 324: Computer Organization 31

1. making an initial pass: converting mnemonics and
building the symbol table when you can

Object Program Memory Map

. Loopl:
Memory Address OP Code/Data
eCXx

0x00 3A byte [eax + ecx]
0x01 7F jne .loop2
0x02 F?

. LOOp2:
0x03

ret
Symbol Table
Symbol Name Symbol Value ?S—S‘f‘me—/g'—"e”{ .
00D 0%00 jne is a 1-byte instruction:
P e 4-bit OP code (F)
e 4-bit operand

T McGill ECSE 324: Computer Organization 32

1. making an initial pass: converting mnemonics and
building the symbol table when you can

Object Program Memory Map

. Loopl:
Memory Address OP Code/Data
eCXx

0x00 3A byte [eax + ecx]
0x01 7F jne .loop2
0x02 F?

. LOOp2:
0x03

ret
Symbol Table
Symbol Name Symbol Value ?S—S‘f‘me—/g'—"e”{ .

00D 0%00 jne is a 1-byte instruction:
| p2 e 4-bit OP code (F)
oop e 4-bit operand

T McGill ECSE 324: Computer Organization 33

1. making an initial pass: converting mnemonics and
building the symbol table when you can

Object Program Memory Map

. Loopl:
Memory Address OP Code/Data
eCXx

0x00 3A byte [eax + ecx]
0x01 7F jne .loop2
0x02 F?

. LOOp2:
0x03

ret
Symbol Table
Symbol Name Symbol Value ?S—S‘f‘me—/g'—"e”{ .

00D 0%00 jne is a 1-byte instruction:
| p2 e 4-bit OP code (F)
oop 0x03 e 4-bit operand

T McGill ECSE 324: Computer Organization 34

1. making an initial pass: converting mnemonics and
building the symbol table when you can

Object Program Memory Map Loop.:
Memory Address OP Code/Data

ecx
0x00 3A byte [eax + ecx]
Ox01 7F jne .loop2
0x02 F?
. LOOp2:
0x03
ret
Symbol Table
Symbol Name Symbol Value assume/given:
loop1 0x00 ret is a 1-byte instruction:
loop?2 0x03 e 8-bit OP code

T McGill ECSE 324: Computer Organization 35

1. making an initial pass: converting mnemonics and
building the symbol table when you can

Object Program Memory Map

. Loopl:

ecx
byte [eax + ecx]

jne .loop2
. LOOp2:

ret

assume/given:

Memory Address OP Code/Data
0x00 3A
Ox01 7F
0x02 F?
0x03 DD
Symbol Table
Symbol Name Symbol Value
loop 0x00
loop?2 0x03
¥ McGill

ret is a 1-byte instruction:
e 8-bit OP code

ECSE 324: Computer Organization 36

Two-pass Assemblers

Two-pass assemblers solve this problem by:

1. making an initial pass: converting mnemonics and
building the symbol table when you can

2. make a final pass filling in missing references

. Loop1l:

ecx
byte [eax + ecx]

jne .loop2
. Loop2:

ret

T McGill ECSE 324: Computer Organization 37

2. make a final pass filling in missing references

Object Program Memory Map

. Loopl:
Memory Address OP Code/Data
0x00 3A E%e [eax + ecx]
0x01 /7F .
00D F? jne .loop2
0x03 DD . Loop2:
ret
Symbol Table
Symbol Name Symbol Value Missing reference?

loop1 0X00 * No
loop?2 0x03

T McGill ECSE 324: Computer Organization 38

2. make a final pass filling in missing references

Object Program Memory Map

. Loopl:
Memory Address OP Code/Data
0x00 3A E%e [eax + ecx]
0x01 /7F .
00D F? jne .loop2
0x03 DD . Loop2:
ret
Symbol Table
Symbol Name Symbol Value Missing reference?

loop1 0X00 * No
loop?2 0x03

T McGill ECSE 324: Computer Organization 39

2. make a final pass filling in missing references

Object Program Memory Map

Memory Address OP Code/Data
0x00 3A
Ox01 7F
0x02 F?
0x03 DD
Symbol Table
Symbol Name Symbol Value
loop 0x00
loop?2 0x03
¥ McGill

. Loop1l:

ecx
byte [eax + ecx]

jne .loop2

. Loop2:

ret

Missing reference?

* Yes!

* Find & replace value
from symbol table

ECSE 324: Computer Organization 40

2. make a final pass filling in missing references

Object Program Memory Map

Memory Address OP Code/Data
0x00 3A
Ox01 7F
0x02 F3
0x03 DD
Symbol Table
Symbol Name Symbol Value
loop 0x00
loop?2 0x03
¥ McGill

. Loop1l:

ecx
byte [eax + ecx]

jne .loop2

. Loop2:

ret

Missing reference?

* Yes!

* Find & replace value
from symbol table

ECSE 324: Computer Organization 41

2. make a final pass filling in missing references

Object Program Memory Map

. Loopl:
Memory Address OP Code/Data
eCx

0x00 3A byte [eax + ecx]
O0x01 7F

jne .loop2
0x02 F3
0x03 DD Rrie

ret

Symbol Table
Symbol Name Symbol Value Missing reference?

loop1 0X00 * No
loop?2 0x03

T McGill ECSE 324: Computer Organization 42

Loading & Executing Object Programs

Once an object program binary memory
layout is generated, we can execute our
assembled program

How?

- by invoking a loader program

Administrator: C:\Windows\system32\CMD.ex

Microsoft Windows [Uersion 6.1.76011]
Copyright {(c?> 20089 Microsoft Corporation. All rights reserved.

C:\Windows\system32>wvhoami /user

USER INFORMATION

T McGill ECSE 324: Computer Organization 43

Loader Program

The loader program has 3 responsibilities:

1. load object program’s contents from file into memory
2. jump to starting address to execute program

3. recover memory after program execution

T McGill ECSE 324: Computer Organization 44

Loader Program
The loader program has 3 responsibilities:

1. load object program’s contents from file into memory
e user identifies file via, e.g., command-line/GUl/etc.
e |oader needs to know: start address & program length

Symbol Table
00000030 BOFFFFFFFF 0x8000 B9
0x8001 FF
00000036 803CA800 0x8003 FF
0x8004 FF
0x8005 41
0000003A 75F9 0x8006 80 START Ox00
0x8007 3C
0x8008 08 loop 0x00
0x8009 00
0x800A 75
0x800B F9 loop?2 0x03
0x800C C3

0000003C C3

out.obj
[binary]

T McGill ECSE 324: Computer Organization 45

Loader Program

The loader program has 3 responsibilities:
2. jump to starting address

* j.e., sets the program counter to the absolute start point
* j.e., executes the first instruction of the object program

Program Counter 0x8000 B9
0x8001 FF
0x8002 FF

0x8000 0x8003 FF
0x8004 FF
0x8005 41
0x8006 80
0x8007 3C
0x8008 08
0x8009 00
Ox800A 75
O0x800B F9
0x800C C3

STARTabs

T McGill ECSE 324: Computer Organization 46

Loader Program

The loader program has 3 responsibilities:

3. recover memory after program execution
e program termination follows a predefined protocol

e |oader cleans up* and returns control to user

0x8000 B9 0x8000
0x8001 FF 0x8001
0x8002 FF 0x8002
0x8003 FF 0x8003
0x8004 FF 0x8004
0x8005 41 0x8005
0x8006 80 0x8006
0x8007 3C 0x8007
0x8008 08 0x8008
0x8009 00 0x8009
Ox800A 75 Ox800A
0x800B F9 0x800B
0x800C C3 0x800C

T McGill ECSE 324: Computer Organization 47

Early Assemblers: Pen, Paper & Books

Convert assembly to binary in memory layout

Mawn Lowp
P24 26 4p 93 TSR seb_up j lodiakse ports

start : $2¢ 3 Aq SE LOA 4RSE 5 Shaw mode
$246 26 94 3 TSk a@% o as SE (Selad)

qu.-kuo: $26 9 246 9, ¢3 IR qe-key) Wak o Aor B b be pressed
$248 €9 ¢A CmP 484 5 A= ank calibnle

$266 D o6 gb BEQ aubo-calilemle
1 e b%w us&«\ﬁ daba n Memory

247 cq 48 CmP 448
YA 0F FS BNE \““‘L‘kﬁ
¢213 Fé 3D 8EQ g0t
aus - calionle: $215 Al AC LDA #2AC 5 Show made as
$217 26 ¢ 3 TR dxsplaa ; AC (Ab calibmle)
$21A 26 3 g2 BR LG fush.laled 5 Fid Y [orst laledl
#21D 2¢ MC @2 JeR W..\u\abm)ﬂmaw s W
G224 AT FD LDA #2FD , Shew mede as
$222 26 9 43 TR cloply ; FO i(iFids it on Dislionee)
¢Z2.5 2¢ 1F Cfg —XSR WO‘LL_ Lor,_e’ /' (’Japt WLVIL B is ,@(essédL
b229 26 D& @2 ISR easwe - wnd —m 5 Measyve B wune on daslonee

T McGill ECSE 324: Computer Organization

48

Early Loaders: Keypads & Fingers

Early loader “interfaces” were rudimentary

- many of these loaders weren’t even implemented in software!

,". |
1.5V

o , i iy (&d&ha\dhm. |

A 1= ‘
.v.l(f-"..‘“‘ "
4' =

1;___

£

|8

. S |
i

< !

i

T McGill ECSE 324: Computer Organization 49

Early Loaders: Keypads & Fingers

Early loader “interfaces” were rudimentary

- many of these loaders weren’t even implemented in software!

¢]
GOja |
Lﬂ;wuw‘

Q QOOOOOQOOD:

A
ooloobo000Q00

OCOQOQQU(

®)

I

Yo
e /o
=)l
OD

C
h C
r, (\

%280 MEMBERSHIP CARD |

-~ McGall ECSE 324: Computer Organization 50

Early Loaders: Keypads & Fingers

Early loader “interfaces” were rudimentary
- many of these loaders weren’t even implemented in software!
- user exposed to a simple, calculator-like keypad

e entered address offsets manually

 populated data* manually

e set PC manually

i ‘. U ._'..(.:..’:. lé‘.: .. ‘.1\7

FAX e xx-aa

* 1 { 020U 0O OCOCOCI020
LA DO OICEOCACIOI0

:|[eagsesenssosnceces

: iosoeossetss

: s

-l w«mo«ucggoe

2 | QNNMO QEAOIOIOT

_ oc-co-..o
'

-4 [Gl__

McGill ECSE 324: Computer Organization 51

LOW- & HIGH-LEVEL
CODE INTERACTION

Multi-source Object File Generation

So far, we assumed assemblers expected one
source file & generated the object program file

00000030 BOFFFFFFFF

zero-terminated ASCII string to determine its size
eax = start address of the zero terminated string
ecx = count = the length of the string

00000035 41
00000036 803C0800

; Entry point

; Init the loop counter, pre-decrement
; to compensate for the increment

; Add 1 to the loop counter 00000@3A 75F9
; Compare the value at the string's
; [starting memory address Plus the

; loop offset], to zero

; If the memory value is not zero,

; then jump to the label called '.loop',
; otherwise continue to the next line

; We don't do a final increment,

; because even though the count is base 1,

; we do not include the zero terminator in the
; string's length

; Return to the calling program

0000003C C3

in.asm out.obj

[plain text] [binary]

For small programs, this suffices, but why shouldn’t
we try to fit everything in a single main.asm?

T McGill ECSE 324: Computer Organization 54

Multi-source Object File Generation

Ideally, we want the flexibility* to split our
code up across files

00000030 BOFFFFFFFF

00000035 41
00000036 803C0800

00000BO3A 75F9

iIn0.asm inl.asm

0000003C C3

out.obj
[binary]

in2.asm in3.asm
T McGill ECSE 324: Computer Organization 55

Multi-source Object File Generation

Here's a better example:

00000030 BOFFFFFFFF

00000035 41
00000036 803C0A800

00000BO3A 75F9

0000003C C3

game.obj
[binary]

al.asm net.asm
Some good reasons: specialization/modularity, team work

T McGill ECSE 324: Computer Organization 56

Multi-source Object File Generation

Does the previous two-pass assembler
algorithm work in this multi-input scenario?

- where does it break down?

00000030 BOFFFFFFFF

00000035 41
00000036 803C0800

00000O3A 75F9

0000003C C3

T McGill ECSE 324: Computer Organization 57

Enter the Linker

To solve this problem, we need to introduce
another tool: the linker

- a linker works in tandem with an assembler

00000030 BOFFFFFFFF

00000035 41
00000036 803C0800

; ; ; 00000BO3A 75F9

0000003C C3

T McGill ECSE 324: Computer Organization

Enter the Linker

How does the output of the assembler (i.e.,
the input to the linker) need to change?

T McGill ECSE 324: Computer Organization 59

Enter the Linker

How does the linker process this output to
generate the final object program?

00000030 BOFFFFFFFF

00000035 41
00000036 803C0800

; ; ; 00000BO3A 75F9

0000003C C3

T McGill ECSE 324: Computer Organization

Assembling Multiple Source Files

First, we assemble source files separately

- unlike the 1-source file case, the assembler
may come across external references that
are in another source file

T McGill ECSE 324: Computer Organization 61

Assembling Multiple Source Files

We need to deal with the fact that external
references may not be resolved during a first (or
second) pass through any single source file

. someExternalFunction:
byte [eax + ecx]

eax, -1

eax
eax, ecx

someExternalFunction

Loop

snd.asm

gfx.asm

T McGill ECSE 324: Computer Organization 62

Assembling Multiple Source Files

So, now, an assembler has more responsibilities:

- follow the original two-pass process to generate:
* memory mapped binary object content
e an exportable symbol table
e a list of externally unresolved references

eax, -1
eax

someExternalFunction

Loop

gfx.asm

T McGill ECSE 324: Computer Organization 63

* memory mapped binary object content

e an exportable symbol table

e a list of externally unresolved references

Object Program Memory Map

Memory Address OP Code/Data
0x00
0x03
0x04
0x06
0x08

Symbol Table

Symbol Name Symbol Value

. Loop:
eax, -1
e€ax

someExternalFunction

Loop

gfx.asm
External References

External Reference Name

T McGill ECSE 324: Computer Organization

64

* memory mapped binary object content

e an exportable symbol table

e a list of externally unresolved references

Object Program Memory Map

Memory Address OP Code/Data
0x00
0x03
0x04
0x06
0x08

Symbol Table

Symbol Name Symbol Value

loop

. Loop:
eax, -1
e€ax

someExternalFunction

Loop

External References

External Reference Name

T McGill ECSE 324: Computer Organization

65

* memory mapped binary object content

e an exportable symbol table

e a list of externally unresolved references

Object Program Memory Map

Memory Address OP Code/Data
0x00
0x03
0x04
0x06
0x08

Symbol Table

Symbol Name Symbol Value

loop 0x00

. Loop:
eax, -1
e€ax

someExternalFunction

Loop

External References

External Reference Name

T McGill ECSE 324: Computer Organization

66

* memory mapped binary object content

e an exportable symbol table

e a list of externally unresolved references

Object Program Memory Map

Memory Address OP Code/Data
0x00 CDFFFF
0x03
0x04
0x06
0x08

Symbol Table
Symbol Name Symbol Value
loop 0x00

. Loop:
eax, -1
e€ax

someExternalFunction

Loop

External References

External Reference Name

T McGill ECSE 324: Computer Organization

67/

* memory mapped binary object content

e an exportable symbol table

e a list of externally unresolved references

Object Program Memory Map

Memory Address OP Code/Data
0x00 CDFFFF
0x03
0x04
0x06
0x08

Symbol Table
Symbol Name Symbol Value
loop 0x00

. Loop:
eax, -1
e€ax

someExternalFunction

Loop

External References

External Reference Name

T McGill ECSE 324: Computer Organization

68

* memory mapped binary object content

e an exportable symbol table

e a list of externally unresolved references

Object Program Memory Map

Memory Address OP Code/Data
0x00 CDFFFF
0x03 DE
0x04
0x06
0x08

Symbol Table
Symbol Name Symbol Value
loop 0x00

. Loop:
eax, -1
e€ax

someExternalFunction

Loop

External References

External Reference Name

T McGill ECSE 324: Computer Organization

69

* memory mapped binary object content

e an exportable symbol table

e a list of externally unresolved references

Object Program Memory Map

Memory Address OP Code/Data
0x00 CDFFFF
0x03 DE
0x04 FA??
0x06
0x08

Symbol Table
Symbol Name Symbol Value
loop 0x00

. Loop:
eax, -1
e€ax

someExternalFunction

Loop

External References

External Reference Name

T McGill ECSE 324: Computer Organization

70

* memory mapped binary object content

e an exportable symbol table

e a list of externally unresolved references

Object Program Memory Map

Memory Address OP Code/Data
0x00 CDFFFF
0x03 DE
0x04 FA??
0x06
0x08

Symbol Table
Symbol Name Symbol Value
loop 0x00

. Loop:
eax, -1
e€ax

someExternalFunction

Loop

External References

External Reference Name

someEkxternalFunction

T McGill ECSE 324: Computer Organization

/1

* memory mapped binary object content

e an exportable symbol table

e a list of externally unresolved references

Object Program Memory Map

Memory Address OP Code/Data
0x00 CDFFFF
0x03 DE
0x04 FA??
0x06
0x08

Symbol Table
Symbol Name Symbol Value
loop 0x00

. Loop:
eax, -1
e€ax

someExternalFunction

Loop

External References

External Reference Name

someEkxternalFunction

T McGill ECSE 324: Computer Organization

/2

* memory mapped binary object content

e an exportable symbol table

e a list of externally unresolved references

Object Program Memory Map

Memory Address OP Code/Data
0x00 CDFFFF
0x03 DE
0x04 FA??
0x06 FBOO
0x08

Symbol Table
Symbol Name Symbol Value
loop 0x00

. Loop:
eax, -1
e€ax

someExternalFunction

Loop

External References

External Reference Name

someEkxternalFunction

T McGill ECSE 324: Computer Organization

/3

* memory mapped binary object content

e an exportable symbol table

e a list of externally unresolved references

Object Program Memory Map

Memory Address OP Code/Data
0x00 CDFFFF
0x03 DE
0x04 FA??
0x06 FBOO
0x08

Symbol Table
Symbol Name Symbol Value
loop 0x00

. Loop:
eax, -1
e€ax

someExternalFunction

Loop

External References

External Reference Name

someEkxternalFunction

T McGill ECSE 324: Computer Organization

/4

* memory mapped binary object content

e an exportable symbol table

e a list of externally unresolved references

Object Program Memory Map

Memory Address OP Code/Data
0x00 CDFFFF
0x03 DE
0x04 FA??
0x06 FBOO
0x08 80

Symbol Table
Symbol Name Symbol Value
loop 0x00

. Loop:
eax, -1
e€ax

someExternalFunction

Loop

External References

External Reference Name

someEkxternalFunction

T McGill ECSE 324: Computer Organization

75

* memory mapped binary object content
e an exportable symbol table
e a list of externally unresolved references

. Loop:
Memorv OP Code/ Symbol Symbol eax, -1
0x00 CDFFFF Name Value eax

0x03 DE loop 0x00
0x04 FA??

0x06 FBOO External Names Loop
0Ox08 80 someExternalFunction

gfx.obj

[binary]

someExternalFunction

T McGill ECSE 324: Computer Organization 76

* memory mapped binary object content
e an exportable symbol table
e a list of externally unresolved references

Object Program Memory

. someExternalFunction:

Memory Address OP Code/Data byte [eax + ecx]
0x00 eax, ecx
0x03
0x05 snd.asm
Symbol Table
Symbol Name Symbol Value

External References

External Reference Name

T McGill ECSE 324: Computer Organization 77

* memory mapped binary object content
e an exportable symbol table
e a list of externally unresolved references

Object Program Memory

. someExternalFunction:

Memory Address OP Code/Data byte [eax + ecx]
0x00
0x03
0x05

eax, ecx

Symbol Table
Symbol Name Symbol Value

someExternalFunction

External References

External Reference Name

T McGill ECSE 324: Computer Organization /8

* memory mapped binary object content
e an exportable symbol table
e a list of externally unresolved references

Object Program Memory

. someExternalFunction:

Memory Address OP Code/Data byte [eax + ecx]
0x00 eax, ecx
0x03
0x05
Symbol Table
Symbol Name Symbol Value
someExternalFunction 0x00

External References

External Reference Name

T McGill ECSE 324: Computer Organization 79

* memory mapped binary object content
e an exportable symbol table
e a list of externally unresolved references

Object Program Memory

. someExternalFunction:

Memory Address OP Code/Data byte [eax + ecx]
0x00 eax, ecx
0x03
0x05
Symbol Table
Symbol Name Symbol Value
someExternalFunction 0x00

External References

External Reference Name

T McGill ECSE 324: Computer Organization 30

* memory mapped binary object content
e an exportable symbol table
e a list of externally unresolved references

Object Program Memory

. someExternalFunction:

Memory Address OP Code/Data byte [eax + ecx]
0x00 75038A
0x03
0x05

eax, ecx

Symbol Table
Symbol Name Symbol Value

someExternalFunction 0x00

External References

External Reference Name

T McGill ECSE 324: Computer Organization 31

* memory mapped binary object content
e an exportable symbol table
e a list of externally unresolved references

Object Program Memory

. someExternalFunction:

Memory Address OP Code/Data byte [eax + ecx]
0x00 75038A
0x03
0x05

eax, ecx

Symbol Table
Symbol Name Symbol Value

someExternalFunction 0x00

External References

External Reference Name

T McGill ECSE 324: Computer Organization 82

* memory mapped binary object content
e an exportable symbol table
e a list of externally unresolved references

Object Program Memory

. someExternalFunction:

Memory Address OP Code/Data byte [eax + ecx]
0x00 75038A
0x03 CD7C
Ox05

eax, ecx

Symbol Table
Symbol Name Symbol Value

someExternalFunction 0x00

External References

External Reference Name

T McGill ECSE 324: Computer Organization 33

* memory mapped binary object content
e an exportable symbol table
e a list of externally unresolved references

Object Program Memory

. someExternalFunction:

Memory Address OP Code/Data byte [eax + ecx]
0x00 75038A
0x03 CD7C
Ox05

eax, ecx

Symbol Table
Symbol Name Symbol Value

someExternalFunction 0x00

External References

External Reference Name

T McGill ECSE 324: Computer Organization 34

* memory mapped binary object content
e an exportable symbol table
e a list of externally unresolved references

Object Program Memory

. someExternalFunction:

Memory Address OP Code/Data byte [eax + ecx]
0x00 75038A
0x03 CD7C
0x05 80

Symbol Table
Symbol Name Symbol Value

eax, ecx

someExternalFunction 0x00

External References

External Reference Name

T McGill ECSE 324: Computer Organization 385

* memory mapped binary object content

e an exportable symbol table
e a list of externally unresolved references

. someExternalFunction:
Memory OP Code/ Symbol Name Symbol Value byte [eax + ecx]

Address Data someExternalFu 0x00 Cax, CCX
0X00 75038A otion

0x03 CD7C
External Names
0x05 80

snd.obj

[binary]

T McGill ECSE 324: Computer Organization 36

Assembling Multiple Source Files

After separately assembling each source file,
we forward individual object files to the linker

- each one stores (potentially incomplete) memory
maps, symbol tables, and external references

T McGill ECSE 324: Computer Organization 37

Enter the Linker

Can you guess what the linker does with these?

- any missing references across object files need
to be resolved

00000030 BIFFFFFFFF

00000035 41
00000036 803C0800

00000O3A 75F9

0000003C C3

T McGill ECSE 324: Computer Organization 38

Enter the Linker

Can you guess what the linker does with these?

- first, we combine the object binaries into a single
sequential memory map

00000030 BOFFFFFFFF

00000035 41
00000036 803C0A800

0000RO3A 75F9

0000003C C3

program.map

T McGill ECSE 324: Computer Organization 39

Enter the Linker

Can you guess what the linker does with these?

- we'll eventually need a globally consistent (relative)
memory map across individual object memory maps

00000030 BOFFFFFFFF

00000035 41
00000036 803C0A800

0000RO3A 75F9

0000003C C3

program.map

T McGill ECSE 324: Computer Organization 90

Enter the Linker

Then, the linker identifies missing references...

OP Code/ Symbol Name Symbol Value

Data someExternalFu 0x00

CD7C
;

snd.obj

OP Code/ Symbol Symbol
CDFFFF Name Value

DE loop 0x00
FA??

FBOO External Names
80 someExternalFunction

gfx.obj

T McGill ECSE 324: Computer Organization 91

Enter the Linker

Then, the linker identifies missing references...

OP Code/ Symbol Name Symbol Value

Data someExternalFu 0x00

CD7C
;

snd.obj

OP Code/ Symbol Symbol
CDFFFF Name Value

DE loop 0x00
FA??

FBOO External Names
80 someExternalFunction

gfx.obj

T McGill ECSE 324: Computer Organization 92

Enter the Linker

... searches other symbol tables for it...

OP Code/ Symbol Name Symbol Value

Data 0X00
75038A

CD7C
;

snd.obj

Memorv OP Code/ Symbol Symbol
0x00 CDFFFF Name Value

0x03 DE loop 0x00
0x04 FA??

80

gfx.obj

T McGill ECSE 324: Computer Organization 93

Enter the Linker
... and replaces it with the mapped (offset) address

Memory OP Code/ Symbol Name Symbol Value
Address Data 0X00

0x00 75038A

0x03 CD7C

snd.obj

Memorv OP Code/ Symbol Symbol

- after processing, any 000 CDFFFF Name Value

0x03 DE loop 0x00

remaining missing 004 FA
FBOO External Names
external references %

are reported as errors

gfx.obj

T McGill ECSE 324: Computer Organization 94

Modularity

One benefit of using separate source files is the
ability to group different functional units together

- often, many different applications can benefit from
similar (if not identical) functionalities

e advanced math routines
e |/O and file processing routines
* image and sound processing routines

* networking routines

- here, it would be unfortunate/foolish to have to
reinvent the wheel every time

T McGill ECSE 324: Computer Organization 95

Modularity

In the previous example, we assumed that every
intermediate object binary is consumed

- once, and

- only for the object program that is being linked

For example, imaging writing two games:

003700 007650

pacman.obj dkong.obj

[binary] [binary]

T McGill ECSE 324: Computer Organization 926

Modularity

You can imagine that these two games could have a
significant overlap in their functionality:

- graphics processing

- sound processing

- keypad processing

In fact, perhaps they only differ in their game logic

- here, it would be ideal to reuse code across programs

gfx.asm snd.asm key.asm

pacman.o
[binary]

T McGill ECSE 324: Computer Organization 97

Modularity

You can imagine that these two games could have a
significant overlap in their functionality:

- graphics processing

- sound processing

- keypad processing

In fact, perhaps they only differ in their game logic

- here, it would be ideal to reuse code across programs

gfx.asm snd.asm key.asm dkong.asm

T McGill ECSE 324: Computer Organization 98

Libraries

We can package these shared routines into a library

gfx.asm snd.asm key.asm

Specifically, assemble + export: memory map, symbol and
external reference tables for each object file

utilities.lib
T McGill ECSE 324: Computer Organization

High-level Programming Languages

Assembly language coding requires a thorough
understanding of the underlying CPU architecture

- pros:
e understanding the implications of executed code
* ability to fine-tune low-level behavior

- cons:
* iteration time
* barrier to entry

e propensity for human error

T McGill ECSE 324: Computer Organization 100

High-level Programming Languages

High-level programming languages reduce
the need for such architecture-specific

knowledge

- reduces the cost of cross-platform
development

- decreases iteration time

- can simplify the design of larger, more
complicated algorithms

T McGill ECSE 324: Computer Organization 101

The Compiler

A compiler converts a high-level source file (or files)
from the high-level language to assembly language

- after which, it invokes the assembler to generate object files

T McGill ECSE 324: Computer Organization 102

The Compiler

A compiler converts a high-level source file (or files)
from the high-level language to assembly language

- after which, it invokes the assembler to generate object files

- after which, the linker generates the final object program

00000030 BIFFFFFFFF

00000035 41
00000036 803C0800

00000O3A 75F9

0000003C C3

T McGill ECSE 324: Computer Organization 103

High-level Programming

High-level language compilers typically allow code
to be split up across files/modules, too

- external references need to be explicitly identified for use
inside a separate module*

- compiler will resolve names, external variable and
subroutine addresses, at compile-time

e except for subroutines & variables in external libraries

e these are resolved at link-time

Compilers can also handle tedious tasks, like stack
frame management for subroutines

- language features may add type and range checking, etc.

T McGill ECSE 324: Computer Organization 104

Compiler Optimizations

"Premature optimization is the root of all evil.”
— Donald Knuth

Compiled assembler code makes no guarantee on size nor
computational efficiency

- for a long time, the battle between hand-optimized assembler &
compiler-generated assembler waged on
Automatic compiler optimization strategies work well

- platform-dependent and independent optimizations possible, even
on heterogeneous compute architectures!

- active research area

T McGill ECSE 324: Computer Organization 105

COMPOSED SOFTWARE SOLUTIONS

MY[COMRUTERICANDO
JANYTHING ANYTHING ANYTHING

| HOPE THIS 0BSCUREJN | HOPE SCRIPTING THIS —
COMPILED FEATURE FEATURE DOESN'T.TAKEJ AS LONG AS IT'S IN THE
DOESN'T HAVE A VIRUS S MY WHOLE WEEKEND

APP STORE

Multi-language Software Development

- Compilers convert high-level source to assembler
- Assemblers assemble source files to object data

- Linkers combine assembled object data into the final
object program machine data

* linkers may also draw from pre-assembled & packaged
library binary object data archives

Conceptually, nothing prevents us from:
- mixing & matching high-level + assembler source

- using many different high-level languages

T McGill ECSE 324: Computer Organization

Multi-language Software Development

lint win_width
lint win_height

lint win_width
nt win_height

void display(void)
ecx

glClear(GL_COLOR_BUFFER BIT);
byte [eax + ecx], @

glutswapBuffers();
b

void reshape(int w, int h)
A

gWMatrixode(GL_PROJECTION); . loop

glloadIdentity(

glortho(0., 1.,
gWiewport(0,

win_width
win_height

glutPostRedisplay();

void keyboard(unsigned char key, int x, int y)
(key) {

exit(e)

}

nt win_width
int win_height

ecx, -1

int win_width
nt win_height

ecx

nt win_width
byte [eax + ecx], @

nt win_height
void display(void)
glClear(GL_COLOR BUFFER_BIT
glutSwapBuffers(); . loop
void reshape(int w, int h)
i

gWatrixtode(GL_PROJECTION
glloadIdentity();

glortho(0., 1., 6., 1.,
gWiewport(0, 0, w, h);

win_width = w;
win_height = h;

glutPostRedisplay();

void keyboard(unsigned char key, int x, int y)
(key) {

exit(0);

}

ecx
byte [eax + ecx], @

. loop

code.asm

= McGill

Multi-language Software Development

00000030 BOFFFFFFFF

00000035 41
00000036 803C0A800

0000RO3A 75F9

code.asm

0000003C C3

B McGill Iit%@@é’ﬂlb(:omputer Organization 110

Multi-language Software Development

High-level languages can call assembler routines and
vice-versa

- when calling assembler from high-level languages:

e assembler code needs to respect the same subroutine
calling conventions as the high-level language

e high-level languages can “access” lower-level control

- here, relying on separate assembler source listings can
sometimes become cumbersome

e many compilers support low-lever inlining facilities

T McGill ECSE 324: Computer Organization

Inlined Assembler Code

int main(void) {

int time = get_time();

asm__ ("movl $10, %eax;"
"movl $20, %ebx;"
"addl %ebx, %eax;"

-
int result = -1;
__asm__ (
"int $0x80"
: "=a" (result),
“+c" (time),
: "a" (0x180)

: "memory”, "cc"

result + 10;

" McGill ECSE 324: Computer Organization

Inlined Assembler Code

asm__ ("movl $10, %eax;"
"movl $20, S%ebx;"
"addl %ebx, %eax;"

F

T McGill ECSE 324: Computer Organization

Inlined Assembler Code

"= McGill

int time = get_time();

int result = -1;

__asm__ |
"int $0x80"
: "=3a" (result),
||+cu (.tlme) ,
: "a" (ox180)

: “"memory”, "cc"

result + 10;

ECSE 324: Computer Organization

Multi-language Software Development

High-level languages can call assembler routines and vice-
versa

- when calling high-level routines from assembler:

* need to match compiler-implemented subroutine calling
mechanism/convention

- pre- and post-conditions must match assembly- and
calling-language conventions

e stack and/or heap
e condition bits/flags

* register post-conditions

T McGill ECSE 324: Computer Organization

Debugging Strategies & Tools

Imagine:

- you've implemented your algorithm
- you've worked through compile errors (and warnings)
- you've worked through link errors

- you run your code and... it doesn’t work
e unexpected (“incorrect”) output
® program crash
* infinite loop

¢ cfc.

How do you debug your problem?

T McGill ECSE 324: Computer Organization 116

Debugging Strategies & Tools

List of some debugging strategies/techniques:

- print statements

e printing tags to highlight execution flow
- loop index variables & branch conditions

e printing final and intermediate variable values

- assertion statements

- unit tests

* important to test both valid and invalid conditions

Each of these strategies requires (re-)building &
(re-)running your application*

T McGill ECSE 324: Computer Organization 117

Enter the

The debugger is a software tool that allows you to debug
your application while it runs

- a more active way to track down and solve bugs

- debuggers sophisticate the process of bug tracking beyond
earlier passive, build-dependent strategies

Concretely, a debugger allows you to:

- stop the execution of your program at any point

- examine (and modify!) the contents of registers, variables, and
memory at this point

- resume execution until another point of interest

T McGill ECSE 324: Computer Organization 118

Enter the

To expose this advanced debugging functionality,
debuggers leverage two key facilities:

- augmented build-generated object data
e exposed through (advanced) software development tools
- execution-level control

e exposed through (advanced) OS & HW facilities

T McGill ECSE 324: Computer Organization 119

— Debug Builds

Modern development toolchains (i.e., cross-compilers, compilers,
assemblers, linkers) allow:

- mapping high-level code to its associated compiled/generated assembly code
- embedding object binaries with debug meta-data
e explicit function and variable sizes and layout info
e source-matched function and variable names
Debug builds are, as a result:

- less efficient* and less compact

T McGill ECSE 324: Computer Organization 120

— OS & HW Facilities

The ability of stopping, resuming, and modifying machine code and
memory during execution requires more than just advanced dev tools

The OS and underlying HW platform must allow the disruption of
normal execution protocols

- for example, the program counter is no longer the sole driving force of
what gets executed next

A special interrupt-based HW feature, called trace mode, is exposed

to the OS (who, in turn, exposes it to the debugger) to allow runtime
debugging

T McGill ECSE 324: Computer Organization 121

— Trace Mode

When processors run in trace mode, they fire an interrupt after the
execution of each instruction

- the OS exposes an associated interrupt-handler
- control flow is then relinquished to the debugger

* the user can now execute debugger commands to:
- view and edit memory (including variables)
- view and edit registers and control flags

e this interrupt is disabled during debugging

* areturn-from-interrupt is posted once the user commands regular
execution flow continuation (which subsequently re-enables the interrupt)

T McGill ECSE 324: Computer Organization 122

— Breakpoints

The compiler/assembler and debugger allow source-
and instruction-level breakpoints to inserted in code

- a similar interrupt-based facility is signaled upon the
execution of an instruction at a breakpoint

- control flow is once again relinquished to the debugger

Advanced development tools will allow for complex
conditional breakpoints to be defined throughout
the code

T McGill ECSE 324: Computer Organization 123

Debugger — Breakpoints

Lﬂé private vold buttonl Click(object sender, Eventirgs e)
193] ¢
20: int LetterCount = 0;
ﬁ) 21: btring strText = "Debugging™;
22: string letter;
24 for {int i = 0; i < strText.Length; i++)
25! {
26 letter = strText.Substring(l, 1);
28: if (letter == "g")
30: LetterCount++;
31 }
H }
34§ textBoxl.Text = "g appears " + LetterCount + " times™;
:lS 5 }
B McGill ECSE 324: Computer Organization 124

Debugger — Breakpoints

function myFunction() -
{

for (var i=0; i<1000; i++)
"+ i),

O Ww o

conscle.log("i ==

4 I d 3

= McGall ECSE 324: Computer Organization 125

Debugger — Breakpoints

ﬂ$| all~ | breakpointhtml ~ 1 «+ &' | T4 d' Watch v | Stack Breakp...
7 function myFunction() - New watch expression...
8| {
9 for (var i=0; i<1000; i++)
0 conscle.log(™i == " + 1i);

4 I d 3

{? McGill ECSE 324: Computer Organization 126

State-of-the-art

A major differentiating technology between mature and
immature software- and hardware-platforms is the quality
and capabilities of their development toolchains

- not just the compilers, assemblers and linkers
- debuggers play a large role here*

Debugger development has remained an open area of
applied research

- accommodating for more complex platforms

- more advanced debugging facilities*

T McGill ECSE 324: Computer Organization 127

The

At a high-level, the OS is responsible for:

- coordinating the execution of (potentially many) user-land
applications

- managing the resources exposed to users
e (equitable?) sharing of HW resources
- managing memory and I/O requests
e providing the illusion* of parallel execution

- hiding latency from dependencies outside the processor
(e.g., RAM, HD, etc.)

The loader is a component* of the OS

T McGill ECSE 324: Computer Organization 128

The Boot-strapping Process

What happens when you boot up your laptop?
- Basic Input-Output System (BIOS) runs

* initializes the system and sets the PC at a pre-determined starting
point in memory

- the bootloader
- Bootloader most-likely boots your OS
- Sophisticated OSes are huge; during OS boot:

- control of resources gradually relinquished to the OS (i.e.,
daemons are deployed at this point)

- OS progressively loaded until user code is allowed to run (OS is
“in charge”, at this stage)

T McGill ECSE 324: Computer Organization 129

Life as an Application on an OS

Life is hard for an application running on an OS

- you're allowed only direct access to a limited subset of the
resources on the platform

- the OS decides when and how to dole out:

e CPU processing access; this is is time-shared between
applications

* access to external resources (e.g., peripherals, disk);
managed using request-based mechanisms

T McGill ECSE 324: Computer Organization 130

Life as an Application on an OS

Printer

Disk

OS

routines
Program
T McGill

A

ECSE 324: Computer Organization 131

Life as an Application on an OS

T

Time

In this example, it's clear that system resources
are not managed to their full potential

- CPU is not at 100% utilization

- I/O devices are not at 100% utilization

T McGill ECSE 324: Computer Organization 132

Life as an Application on an OS

T

Time

Multitasking (a.k.a. multiprogramming) OSes
better manage these inefficiencies by scheduling
resource utilization across applications

- latency-hiding can happen across scales

T McGill ECSE 324: Computer Organization 133

Life as an Application on an OS

Latency Mumbers Everyg Programmer Should Know

Wins
™ L1 cache reference: 8.5ns

[] |
M B Granch mispredict: Sns
|

[] |

H MW L2 cache reference:! 7ns
[] |

[|

EEEER
EEEERN
HHENENEN Mutex lockAunlock: 25ns
EEEERN
EEEEN

EEEEEEEEEE
EEEEEEEEEE
EEEEEEEEEE
EEEEEEEEEN
EEEEEEEEEN _
EEEEEEEEEE - ¥ 199ns
EEEEEEEEEE
EEEEEEEEEE
EEEEEEEEEE
EEEEEEEEEN

= McGill

ECSE 324: Computer Organization

Source! https.//qgist. github.com/ 2841832

134

Life as an Application on an OS

Latency Mumbers Everyg Programmer Should Know

Mins B Main memory reference! 168 ns
™ L1 cache reference: 8.5ns EEEENE_ fus
EEmmEm *
[] |
M B Granch mispredict: Sns EEEEN
| EEEEN
===.= Compress 1KEB with Zippy: 3ps
[] | EEEEN
BN L2 cache reference: 7ns EEEEN
[| |
[|
EEEEEEEEEN
EEEEEEEEEN
EEEEN EEEEEEEEEN
EEEERN EEEEEEEEEN
HENENEN Mutex lock/unlock: 25ns IIIIIIIIII_-J_e
EEEEN EEEEEEEEEN i
EEEERN EEEEEEEEEN
EEEEEEEEEN
EEEEEEEEEN
AEEEEEEEEERN EEEEEEEEEN
EEEEEEEEEN
EEEEEEEEEN
HHHHT
EEEEEEEEEE - ¥ 199ns
EEEEEEEEEN
EEEEEEEEEN
EEEEEEEENEN
EEEEEEEEERN

Source! https.//qgist. github.com/ 2841832

B McGill ECSE 324: Computer Organization 135

Life as an Application on an

Latency Mumbers Every Programmer Should Know

Mins
™ L1 cache reference: 8.5ns

[} |
M W Branch mispredict! Sns
[|

[] |

H MW L2 cache reference:! 7ns
[] |

[|

EEEEN
EEEER
HENENEN Mutex lock/unlock: 25ns
EEEER
EEEERN

EEEEEEEEEN
EEEEEEEEEN
EEEEEEEEEE
T
EEEEEEEEEE - ¥ 199ns
EEEEEEEEEN
EEEEEEEEEN
EEEEEEEEEE
EEEEEEEEEE

B McGill

B Main memory reference: 188 ns

EEEEN _

TTTT s

EEEEN

EEEEN

EEEEN N
EEEEE Compress 1KB with Zippy: 3ps
EEEEN

EEEEN

EEEEEEEEEN
EEEEEEEEEN
EEEEEEEEEN
EEEEEEEEEN
EEEEEEEEENE _
TTTTITTTI T i
EEEEEEEEEN
EEEEEEEEEN
EEEEEEEEEN
EEEEEEEEEN

M Send 1KB over 1Gbps netuwork: 18ps

33D random read (1Cb/s 33D
158ps

EEEEN
EEEEE Read 1MB sequentially

EEEEE from memory: 258 ps
EEEEN

B BN Round trip in same
B ENEN datacenter: 588 ps

=M 1inms

ECSE 324: Computer Organization

Source! https.//qgist. github.com/ 2841832

136

Life as an Application on an OS

Latency Mumbers Every Programmer Should Know

Mins

™ L1 cache reference: 8.5ns

[} |
M W Branch mispredict! Sns
[|

[] |

H MW L2 cache reference:! 7ns
[] |

[|

EEEEN
EEEER
HENENEN Mutex lock/unlock: 25ns
EEEER
EEEERN

=M 188 ns

F McGill

B Main memory reference: 188 ns

N
N
]
N
L]
1
[N
=
n

Compress 1KEB with Zippy: 3ps

=M 18ps

M Send 1KB over 1Gbps netuwork: 18ps

33D random read (1Cb/s 33D
158ps

EEEEN
EEEEE Read 1MB sequentially

EEEEE from memory: 258 ps
EEEEN

Round trip in same
datacenter: 588 ps

EEEEEEEEEN
1"
i
[N
2
n

ECSE 324: Computer Organization

M Read 1MB sequentially
from33D: 1ms

EEEENE . .
EEEEE Disk seek: 18ms

EEEEN

BENNEN Read 1MB sequentially
BENENEN from disk: 28 ms
EEEEN

EEEEEEEEEN
EEEEEEEEEN
EEEEEEEEEN
EEEEEEEEEN
EEEEEEEEEN
HEEENENENENENENEN Packet
EEEEEEEEEN roundtrip
HEEEREENENENENENCAto
BEEEEEENENENN Netherlands:
EEENEEENENENEN 158ms
EEEEEEEEEN
EEEEEEEEEN
EEEEEEEEEN
EEEEEEEEEN
EEEEEEEEEN

Source! https.//qgist. github.com/ 2841832

137

Conclusion

A hardware platform is only as useful as the software that
is implemented on it

- enabling "good” software is just as important (or more
important?) as enabling "good” hardware

The development toolchain is an important piece of this
ecosystem

- interaction of low- and high-level languages
- interaction across abstraction layers

e HW — OS — User applications

T McGill ECSE 324: Computer Organization 138

