
Computer Organization

Memory
ECSE 324

Fall 2020

Prof. Christophe Dubach

Original slides from Prof. Warren Gross. Some material from Hamacher, Vranesic, Zaky, and Manjikian, “Computer Organization and 
Embedded Systems, 6th ed”, 2012, McGraw Hill and “Introduction to the ARM Processor using Altera Toolchain”.



2



3

??



4

capacity? 



5

Elpida 1 GB LPDDR3 SDRAM  - "memory" 

Toshiba 16 GB NAND Flash - "storage"

What is the difference between memory and storage?

How do they interact?

What are the different technologies used to implement memory?

“Memory”, “Main Memory”, “RAM”,...
Volatile working memory (loses its 
contents when the machine is off) – 
addressable

”Storage”, “Capacity (marketing 
term!)”, ”Hard disk”, “Hard drive”, 
”drive”, “solid-state drive (SSD)”, 
”flash”,...

-> non-volatile long-term storage for 
files and data. Do not access 
through address space, rather 
through the operating system which 
manages a file system.

iPad Air



Memory Technology
Textbook 8.1, 8.2, 8.3
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Abstraction



RAM

• Memory access time

time from initiation to completion of a word or byte transfer

• Memory cycle time

minimum time delay between initiation of successive 
transfers

Random-access memory (RAM)

means that access time is same, independent of location
8



Semiconductor RAM

• Organized as an array of cells, each storing one bit

• Each row of the array stores one memory word

!!! Memory word might be different from processor word !!!

E.g. consider a 16x8 RAM with a 8-bit wordsize and 16 words. 

• How many bits does this memory store ?

•  How many bits are needed for the memory address? 
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word line

bit lines (bit and it’s complement)

chip select for
multichip system

(one-hot 
   code)

14 + 2 (power & ground)
= 16 pins

16x8 RAM
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1024x1 RAM
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SRAM

• Static RAM: retains contents as long as power is 
applied, but volatile – if power is removed the contents 
are destroyed.

• Fast (access time of a few ns), but expensive – each 
cell require 6 transistors to store a bit.

• As a result, SRAMs are limited to how large they can be 
– typically at most a few Mbits.

• Use to implement “cache” memory, but not the main 
memory
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CMOS realization of a NOT gate
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cross-coupled inverters

SRAM Cell

access 
transistor
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CMOS 6T SRAM Cell 16



DRAM

• Dynamic RAM: Retains contents for only a few tens of 
milliseconds and must be periodically “refreshed” to 
maintain the contents for longer periods.

• Slower than SRAM, but more dense (less expensive) – 
the DRAM cell is simpler than the SRAM cell.

• Can implement DRAMs with large capacity (~gigabits)

• Used to implement main memory
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State is presence (“1”) or absence (“0”) of charge in capacitor

A small amount of current flows through transistor even when it is OFF,
resulting in a leak of the stored charge

DRAM Cell



Reading DRAM

• Read: Sense amplifier connected to the bit line detects if the 
charge in the capacitor is above a threshold 

• If above threshold, the sense amplifier drives the bit line to full 
voltage (“1”) and as a result the capacitor is recharged to full 
voltage (“1”)

• If below threshold, the sense amplifier pulls the bit line down to 
ground (“0”) and the capacitor is discharged fully (“0”)

 reading a DRAM cell refreshes its contents (an entire row is 
read and refreshed at the same time)

To refresh the entire DRAM each row in the DRAM must be 
periodically read – done by an external memory controller
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Refresh overhead

• Assume that each row needs to be refreshed every 64 
ms, the minimum time between two row accesses is 50 
ns and that all rows are refreshed in 8192 cycles

• Read/write operations have to be delayed until refresh is 
finished. What is the refresh overhead?
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256 Mb Asynchronous DRAM organization (32M x 8)

32 Mb = 32 x 220 = 225

25-bit address

14 bits / 11 bits

row/column 
addresses are 
multiplexed
onto same 14 pins

row address strobe (applied first, 
generated by external memory controller)

column address strobe (bar 
indicates active low)
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Fast Page Mode

• In preceding example, all 16,384 cells in a row are 
accessed (and also refreshed as a result)

• But only 8 bits of data are actually transferred
for each full row/column addressing sequence

• For more efficient access to data in same row, latches in 
sense amplifiers hold cell contents

• For consecutive data, just assert CAS signal and 
increment column address in same row

• This fast page mode is useful in block transfers
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Synchronous DRAMs

• Modern synchronous 
DRAM (SDRAM) 
uses a clock to 
generate internal 
timing signals (e.g. 
CAS and RAS)

• Memory controller is 
integrated on-chip 
(built-in refresh 
circuit) 

• “dynamic” nature of 
the chip is invisible to 
the user
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registers buffer the data – can 
initiate a new read of the array 
while reading out the previous 
word from the register



Efficient Block Transfers

• Synchronous DRAM 
reduces delay by 
having  CAS assertion 
once for initial column 
address

• SDRAM circuitry 
increments column 
counter and transfers 
consecutive data 
automatically

• Burst length 
determines number of 
transfers

Burst length of 4, RAS delay of 2 cycles, CAS delay of 1 cycle



Memory latency and bandwidth

• Memory latency (ns) is 
the time for the first 
word of a block transfer 
to appear on the data 
lines

• The time between 
subsequent words is 
much shorter than the 
time needed to transfer 
the first word

• The memory bandwidth 
(number of bits or bytes 
transferred per second) 
is a useful performance 
measure for a SDRAM

Latency is 5 cycles. If the clock is 500 MHz, the 
latency is 5 * 1/500e6 = 10 ns

Remaining three words transferred at one word 
every 2 ns



Double-Data-Rate (DDR) SDRAM

• Modern SDRAMs use both rising and falling edges of 
the clock (“Double data rate”)

e.g. DDR4 has a clock of 2133 MHz and can support up to 
2400 MTransfers / second

8 Gbyte DDR4-2133 ECC 1.2 V RDIMM 
(registered dual-inline memory module)



Multi-chip memories (e.g. 2M x 32 SRAM)
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Non-volatile memories

• Non-volatile memories retain their contents even when 
the power is removed.

• Slower than volatile memories and special procedure for 
writes

• Suitable for implementing long-term storage

• e.g. Solid-State Disk (SSD)
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Read-only-memory (ROM)

contents written only once, at the time of manufacture



PROM, EPROM, and EEPROM

• Cells of a programmable ROM (PROM) chip may be 
written after the time of manufacture

• A fuse is burned out with a high current pulse

• An erasable programmable ROM (EPROM) uses a special 
transistor instead of a fuse

• Injecting charge allows transistor to turn on

• Erasure requires UV light to remove all charge

• An electrically erasable ROM (EEPROM) can have 
individual cells erased with chip in place



Flash Memory

• High-density, low-power and low-cost

• For higher density, Flash cells are designed
to be erased in larger blocks, not individually

• Writing individual cells requires reading block, erasing 
block, then writing block with changes

• Flash cells can only be written a certain number of times – 
wear levelling distributes writes to avoid wearing out one 
part of the memory before others

• Widely used in cell phones, digital cameras, and solid-state 
drives (e.g., USB memory keys)



Direct Memory Access (DMA)
Textbook 8.4
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Direct Memory Access

• CPU Overhead for block transfers 
between I/O and memory is high 
because each transfer involves 
only a single word or a single byte 
(Load/Store instructions plus other 
instructions to calculate 
addresses)

• Solutions: A direct memory access 
(DMA) controller manages the 
transfer of larger blocks of data 
between memory & I/O devices.

• CPU initiates transfer, which is 
managed by the DMA unit without 
further CPU involvement



DMA Controller

• DMA controller is shared, 
or in each I/O device

• Keeps track of progress 
with address counter

• Processor initiates DMA 
controller activity after 
writing information to 
special registers 
(starting address, count, 
Read/Write, etc.)

• Processor interrupt used 
to signal completion



Caches
Textbook 8.5, 8.6
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The problem

• Want very large memory that is very fast

• DRAM can be large, but is slow
• SRAM can be fast, but not large

• Solution: use both DRAM and SRAM in a way that the 
processor thinks it has a single large memory that is 
fast

• The solution should be transparent to the programmer
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Library: large, slow access Desk: small, fast access



“Ideally one would desire an indefinitely large memory capacity 
such that any particular…word would be immediately 
available…We are…forced to recognize the possibility of 
constructing a hierarchy of memories, each of which has 
greater capacity than the preceding but which is less quickly 
accessible.”

A. W. Burks, H. H. Goldstine, and J. von Neumann,  
“Preliminary Discussion of the Logical Design of an electronic computing instrument”, 1946

Unlimited Amounts of Fast Memory?
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SRAM DRAM

• Keep a copy of frequently used data in the small cache memory (fast) so that if 
it is needed again it is quickly accessible without going to the large main 
memory (slow)

• Specialized hardware manages the movement of data between the main 
memory and the cache 

• Transparent to the programmer (load/stores use memory addresses as usual).

• Why should software engineers care about this if it is transparent? As we will 
see, it works well most of the time, for most programs, but sometimes, having 
knowledge of how caches work will help you write better programs.
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So why does this work?

• This only works because 
humans write programs 
with structure.

• If you look at a trace of 
memory addresses 
issued by the processor 
running typical programs, 
you see patterns

• This is called the 
“principle of locality” and 
is the reason caches 
work.
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Temporal locality

Recently accessed items are likely to be 
accessed again soon—loop, reuse

Spatial locality

Items with nearby addresses tend to be 
referenced nearby in time—code without 
branching, arrays

store blocks of multiple words in the cache



Cache basics

• Processor requests an item (instruction fetch, load)

• If it is found in the cache: hit

– deliver the desired item to the processor

• If it is not found in the cache: miss

– copy the block from main memory into the cache and 
then deliver the item to the processor
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Hit and miss rate

• For a cache to make sense, most accesses to memory 
have to hit the cache. It is not uncommon for caches to 
have a hit rate of > 95%

hit rate = # cache hits / # memory accesses

miss rate = 1 – hit rate

44



Valid bit

• Each block has a valid bit, initialized to 0 upon startup to 
indicate the block is “empty” – set to 1 when a block is 
copied to the cache

• For a hit, valid bit must be 1

• Stale Data:

– e.g. DMA transfer: Disk → Memory
cache may contain stale data from memory, so 
valid bits are cleared to 0 for those blocks



Where to put blocks in the cache?

Main memory is divided into blocks  (a.k.a cache lines), 
each consisting of several consecutive data elements 
(e.g. bytes)

Block in main memory must be transferred to the cache 
after a miss 

• The mapping function determines the location

• Some mapping functions are simple, and some are more 
complex but have higher performance, i.e. result in a higher hit 
rate
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Direct Mapping

• Every memory block maps to a single cache block

• n = # blocks in cache

    memory block j  cache block (→ j mod n)

   Simplest approach: uses a fixed mapping

❌  Multiple blocks may contend for same location

• New block always overwrites previous block

• If you have multiple frequently accessed blocks that kick eachother out of the 
cache, you will have many cache misses and suffer the penalty of having to go to 
main memory frequently
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block size  = 16 words 
Cache size   n = 128 blocks
Main memory has   64K bytes (4K blocks) 
Memory address is  16-bits

    memory block j → cache block (j mod 128)

    

block address in memory



49

• Each cache block ha0s some space to store 
the “tag” (upper 5 bits) of the memory block 
that is currently stored in that block

• On an access, the tag of the requested address 
is compared with the stored tag. 

• If they match -> cache hit !

    

block address in memory





Fully Associative Mapping

• The most flexible 
mapping: a main 
memory block can 
be placed into any 
cache block

• A block is only 
ejected from the 
cache if it is full

• The entire block 
address is the tag

• Check if a block is in 
the cache by doing 
an associative search 
of ALL the cache 
tags in parallel – 
complex ! 51





Set-Associative Mapping

•  k-way set-associative cache: Group blocks 
of cache into sets of k blocks

• Direct mapping of a memory block to a 
specific set - any block in the set can be 
used

    memory block j  → cache set (j mod 64)

• Associative search involves only tags in a 
set (k = 2, 4, 8)

• Direct-mapped : 1-way
Associative       : n-way





Replacement policies

• Replacement is trivial for direct mapping,
but need a method for associative mapping

• least-recently-used (LRU) algorithm

• Requires specialized hardware to track accesses to cache 
blocks in a set

• Another replacement policy is to remove the “oldest” 
block in the set

• Random replacement works surprisingly well



Writes to Cache

• Write hit:

•  Write-through: write to both the cache and the main memory

•  Write-back: only write to the cache. Update the main memory only when that cache 
block is removed from the cache to make room for another block. A dirty bit (or 
modified bit) is set to indicate the cache block has been modified and is no longer 
identical to the block in main memory

• Write miss:

• If write-through is being used, then write directly to the main memory on a write miss

• If write-back is being used, first copy the block containing the addressed word into 
the cache, and then write the new word in the cache block

• Flushing the cache in case of Write-Back policy

• Store modified blocks from cache to memory using dirty bit 
information



Cache example

• A 4x10 array of 16-
bit numbers is 
stored in an array A 
in column order.

• Normalize the 
elements of the first 
row of A with 
respect to the 
average value of the 
elements in the row
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Cache example
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• Memory word size = 16 bits

• Word-addressable with 16-bit 
addresses

• Block size = one 16-bit word

• Cache size n = 8 blocks

• LRU replacement

• Consider direct mapped, 
associative and 4-way set-
associative caches



Direct-mapped
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only 2 hits!



Associative
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reversing the order of the 
seconds loop helps hit the 
cache

only 2 misses !



Set-Associative
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6 misses in the second loop

All desired blocks have even 
addresses – all map to Set 0



Instruction & Data cache

Instructions and data are stored in 
same memory; however:

• Different access patterns

– repetitions (e.g. loops)

– linear sequences of 
instructions

• Instructions are read-only
(mostly)

• L1 separated into data cache  
and instruction cache



Secondary storage technology
Textbook 8.10
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Secondary storage

• Non-volatile long term storage

• Bottom of memory hierarchy → slow but large capacity

• Managed by the operating system

• Flash memory (SSD) is the technology used in phones, 
tablets, and some laptops

• Magnetic disks (hard drives) have lower cost / bit
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Magnetic Hard Disks

• One or more platters on a common spindle

• Platters are covered with thin magnetic film

• Platters rotate on spindle at constant rate

• Read/write heads in close proximity to surface can 
access data arranged in concentric tracks

• Magnetic yoke and magnetizing coil can change or 
sense polarity of areas on surface





• A cylinder is a logical set of tracks on a stack of disks that can 
be accessed without moving the read/write heads

• Formatting information includes track/sector markers and 
error-correcting code (ECC) information

•  Filesystem: data structures that the O/S uses to keep track of 
files organized on the disk



Access time

•  Seek time = time required to move the read/write head to 
the proper track. Depends on the initial position of the head.

• Average values are 5 to 8 ms

•  Latency (rotational delay) = time to read addressed sector 
after the head is positioned over the correct track. 

• On average the time for ½ a rotation of the disk

Access time = seek time + latency

• Flash access time is typically 35 to 100 ms (100x faster)
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Virtual Memory
Textbook 8.8, 8.9
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Virtual Memory

• Physical mem. Capacity ≤ address space size

• A large program or many active programs may not be entirely 
resident in the main memory

• Use secondary storage (flash or magnetic disk) to hold 
portions exceeding memory capacity (“swap file” or “page 
file”) – makes the RAM appear to be very large

• Virtual memory is the lowest tier of memory hierarchy

• Magnetic disk (5 ms) is 5 orders of magnitude slower than SDRAM 
(15 ns) 

• It is important to manage virtual memory carefully to reduce number 
of disk accesses - managed in software (O/S) 



Virtual Memory

• Programs written assuming full address space

• Processor issues virtual address (logical address) 

• Must be translated into physical address

• Proceed with normal memory operation
when addressed contents are in the memory

• When no current physical address exists, perform actions 
to place contents in memory

• The mapping is fully associative (reduce miss rate !)



Memory Management Unit

• Implementation of virtual memory relies on a memory 
management unit (MMU)

• Maintains virtual → physical address mapping to 
perform the necessary translation

• When no current physical address exists, MMU invokes 
operating system services

• Causes transfer of desired contents from disk to the 
main memory using DMA scheme

• MMU mapping information is also updated





Address Translation

• Use fixed-length unit of pages (2K-16K bytes)

• Larger size than cache blocks

• Disks have high access times, but bandwidths of several MB / s

• For translation, divide address bits into 2 fields

• Lower bits give offset of word within page

• Upper bits give virtual page number (VPN)

• Translation preserves offset bits, but causes VPN bits to be replaced with 
page frame bits

• Page table (stored in the main memory) provides information to perform 
translation



Page Table

• MMU must know location of page table

• Page table base register has starting address

• Adding VPN to base register contents gives location of 
corresponding entry about page

• If page is in memory, table gives frame bits

• Otherwise, table may indicate disk location

• Control bits for each entry include a valid bit and modified bit 
indicating needed write-back 

• Also have bits for page read/write permissions





Translation Lookaside Buffer

• MMU must perform lookup in page table
for translation of every virtual address

• For large physical memory, MMU cannot hold entire 
page table with all of its information

• Translation lookaside buffer (TLB) in the MMU holds 
recently-accessed entries of page table

• Associative searches are performed on the TLB with 
virtual addresses to find matching entries

• If miss in TLB, access full table and update TLB





Page Faults

• A page fault occurs when a virtual address has no 
corresponding physical address

• MMU raises an interrupt for operating system to place 
the containing page in the memory

• Operating system selects location using LRU, 
performing write-back if needed for old page

• Delay may be long, involving disk accesses, hence 
another program is selected to execute

• Suspended program restarts later when ready



What’s next

• In the next chapter we will look at how the hardware of 
the processor is implemented and how it executes 
instructions
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