McGiall

Computer Organization

Memory

ECSE 324
Fall 2020

Prof. Christophe Dubach

Original slides from Prof. Warren Gross. Some material from Hamacher, Vranesic, Zaky, and Manjikian, “Computer Organization and
Embedded Systems, 6t ed”, 2012, McGraw Hill and “Introduction to the ARM Processor using Altera Toolchain”.

P 1 Yearin-Home Support included!

¥ 3 YearIn-Home Support included!

Inspiron 15 5000 Intel Non-
Touch
$779.99

7th Generation Intel® Core™ i5-7200U

Processor

Windows 10 Home 64-bit English

A

8GB, DDR4, 2400MHz, up to 16GB

1TB 5400 rpm SA

Inspiron 15 5000 Intel Touch

$928.99 $799.99

7th Generation Intel® Core™ i5-7200U

Processor

Windows 10 Home 64-bit English

8GB, DDR: 16GB

(‘ITB 5400 rpm SATA Hard Drive

Inspiron 15 5000 Intel Non-
Touch
$1,127.99 $899.99

7th Generation Intel® Core™ i7-7500U

Processor

Windows 10 Home 64-bit English

8GB, DDR4, 2400MHz, up to 16GB

1TB 5400 rpm SATA Hard Drive

Inspiron 15 5000 Intel Non-
Touch
$949.99

7th Generation Intel® Core™ i5-7200U

Processor

Windows 10 Home 64-bit English

256GB Solid State Drive

= 15.6-in. display

= 15.6-in. touch display

= 15.6-in. display

= 15.6-in. display

Introducing our newest line of portable
powerhouses. Standard with 7th
generation Intel® processing power,
these laptops are designed with you in
mind.

Shipping Free

Featured at $779.99

Upgrade to a touch screen display and
experience the true versatility a laptop
has to offer. 1 Year In-Home Support
included!

Starting Price Lompon
Instant Savings $129.00
Shipping Free
Featured at $799.99

Upgraded with the new 7th gen Intel®
Core™ i7 processor and a 4GB GDDR5
AMD graphics card. 3 Year In-Home
Support included!

Starting Price $1.12709
Instant Savings $228.00
Shipping Free
Featured at $899.99

Introducing our newest line of portable
powerhouses.

Shipping Free

Featured at $949.99

Tech Specs &
Customization

Features

Tech Specs & Customization New Inspiron 15 3000

(Intel®)

Configurations | Software & Accessories | Support & Services

(&) Configurations

Processor

Operating System

Memoryi

Hard Drive

Video Card

More Info

Ratings & Reviews

< View all configurations

7th Generation Intel® Core™ i5-7200U Processof (3MB Cache, up to

3.10 GHz)

Windows 10 Home 64-bit English

More Info

77

8GB, 2400MHz, DDR4; up to 16GB (additional memory sold

separately)

More Info

1TB 5400 rpm Hard Drive

More Info

Intel® HD Graphics 620

Support

New Inspiron 15 3000
(Intel®)

Starting Price e
Instant Savings $159.00
Shipping Free
Featured at $629.99
DFS Financing

$18.00/mo. | 48 months at 13.99% t
APR Range: 13.99% to 28.99% t

Learn More

* Get $32.00 back

in rewards

Ships 08-03-2017

Order Code ni153567_ftsb_s111e

iPad

Models

Capacity’

Size and Weight?

Wi-Fi

Wi-Fi
32GB capacity?
128GB

Height: 240 mm (9.4 inches)
Width: 169.5 mm (6.6 inches)

Overview i0S Tech Specs

Wi-Fi + Cellular

Wi-Fi + Cellular

32GB
128GB

Height: 240 mm (9.4 inches)
Width: 169.5 mm (8.6 inches)

What is the difference between memory and storage?
How do they interact?

What are the different technologies used to implement memory?

‘Memory”, “Main Memory”, “‘RAM",... "Storage”, “Capacity (marketing

Volatile working memory (loses its term1)”, "Hard disk’, "Hard drive”
contents when the machine is off) — "drive”. “solid-state drive (SSD)’ '
addressable "ﬂash"'... ‘

-> non-volatile long-term storage for
files and data. Do not access
through address space, rather
through the operating system which
manages a file system.

iPad Air

Elpida 1 GB LPDDR3 SDRAM -"'memory"

Memory Technology

Textbook 8.1, 8.2, 8.3

Abstraction

Processor-memory interface

¥ k-bit address

n-bit data

Up to 2% addressable

locations

Word length = n bits

Control lines
Processor R /W, etc.)

RAM

* Memory access time

time from initiation to completion of a word or byte transfer

* Memory cycle time

minimum time delay between initiation of successive
transfers

Random-access memory (RAM)

means that access time is same, independent of location

Semiconductor RAM

» Organized as an array of cells, each storing one bit

» Each row of the array stores one memory word

I Memory word might be different from processor word !l

E.g. consider a 16x8 RAM with a 8-bit wordsize and 16 words.

* How many bits does this memory store ?

* How many bits are needed for the memory address?

16x8 RAM o
bit lines (bit and it's complement)

word line g 2 2y b by bo

/

Address

o'

Memory
cells

decoder

(one-hot
code)

\

R/W

CS

chip select for
multichip system

Sense/Write
circuit

Sense/Write
circuit

Sense/Write

14 + 2 (power & ground) circuit

=16 pins

10

Data input/output lines: b4

1024x1 RAM

5-bit row
address W,
/N =
5-bit
decoder
) W3 |
10-bit
address S /AN

JZ2 %32
memory cell
array

5-bit column
address

32-to-1
output multiplexer
and
input demultiplexer

|

Data
input/output

Sense/ Write
circuitry

—

— R/W

—— S

11

SRAM

 Static RAM: retains contents as long as power is
applied, but volatile — if power is removed the contents
are destroyed.

 Fast (access time of a few ns), but expensive — each
cell require 6 transistors to store a bit.

* As aresult, SRAMSs are limited to how large they can be
— typically at most a few Mbits.

e Use to implement “cache” memory, but not the main
memory —

Vs—OV —_
V=VDD
>\
ve—q[
Vb

VD=0V

Closed switch
whenVg =V p

NMOS transistor

Open switch
when VG = VDD

PMOQOS transistor

Open switch
whenVg= 0V

“ON’

Vb=Vpp
Closed switch
whenVg= 0V

13

0 onoff 1
1 offon O

CMOQOS realization of a NOT gate

SRAM Cell

b b’
cross-coupled inverters
access ‘ >O
transistor
+— Tl — X Y +— T2 —
Word line
& 9
- Bit lines

15

Vmppf}*

1

ol

Word line

Bit lines

CMOS 6T SRAM Cell

16

DRAM

* Dynamic RAM: Retains contents for only a few tens of
milliseconds and must be periodically “refreshed” to
maintain the contents for longer periods.

 Slower than SRAM, but more dense (less expensive) —
the DRAM cell is simpler than the SRAM cell.

» Can implement DRAMs with large capacity (~gigabits)

* Used to implement main memory

DRAM Cell

Bit line

Word line

" n "

State is presence (“1") or absence (“0") of charge in capacitor

A small amount of current flows through transistor even when it is OFF,
resulting in a leak of the stored charge

18

Reading DRAM

* Read: Sense amplifier connected to the bit line detects if the
charge in the capacitor is above a threshold

e |[f above threshold, the sense amplifier drives the bit line to full

voltage (“1") and as a result the capacitor is recharged to full
voltage (“1")

* |f below threshold, the sense amplifier pulls the bit line down to
ground (“0") and the capacitor is discharged fully (“0")

= reading a DRAM cell refreshes its contents (an entire row is
read and refreshed at the same time)

To refresh the entire DRAM each row in the DRAM must be
periodically read — done by an external memory controller

Refresh overhead

* Assume that each row needs to be refreshed every 64
ms, the minimum time between two row accesses is 50
ns and that all rows are refreshed in 8192 cycles

e Read/write operations have to be delayed until refresh is
finished. What is the refresh overhead?

256 Mb Asynchronous DRAM organization (32M x 8)

row address strobe (applied first, 32 Mb = 32 x 220 = 925
generated by external memory controller)
RAS l
Cell array
Row
Row 16,384 rows
address :
latch ::>' decoder . by
2,048 bytes

14 bits / 11 bits

Ay 11/A1 90 = ‘ Sense/Write " CS
circuits —
25-bit address RIW
Column
i Column
row/column latch decoder
addresses are
multiplexed A I [
onto same 14 pins
CAS D, Dy

column address strobe (bar
indicates active low)

21

Fast Page Mode

* In preceding example, all 16,384 cells in a row are
accessed (and also refreshed as a result)

* But only 8 bits of data are actually transferred
for each full row/column addressing sequence

 For more efficient access to data in same row, latches in
sense amplifiers hold cell contents

e For consecutive data, just assert CAS signal and
iIncrement column address in same row

 This fast page mode is useful in block transfers

Synchronous DRAMSs

Refresh
counter
* Modern synchronous
DRAM (SDRAM) {}
uses a clock to .
generate internal > address [RO Cell array
timing signals (e.g. i
CAS and RAS) b
Column .
* Memory controller is > address P> decoder Foref 19
integrated on-chip
(built-in refresh @
CirCUit) Ol —id 0
* “dynamic” nature of % | i Dt it Data output
— G i register register
the chip is invisible to R, —=) eSS - .
the user & — G
registers buffer the data — can lifa
initiate a new read of the array
while reading out the previous 93

word from the register

Efficient Block Transfers

e Synchronous DRAM
reduces delay by
having CAS assertion
once for initial column
address

* SDRAM circuitry
increments column
counter and transfers
consecutive data
automatically

 Burst length
determines number of
transfers

Clock

R/W

RAS

CAS

Address

Data

XROW x x Col x

(DO X DI X D2 X D3)_

Burst length of 4, RAS delay of 2 cycles, CAS delay of 1 cycle

Memory latency and bandwidth

* Memory latency (ns) is
the time for the first Clock M|
word of a block transfer
to appear on the data _
lines =l

* The time between RAS
subsequent words is
much shorter than the -
time needed to transfer s .

the first word
Address XROW x x Col x

* The memory bandwidth

(number of bits or bytes — - .
transferred per second) e AR L TN

s a useful performance Latency is 5 cycles. If the clock is 500 MHz, the
measure for a SDRAM latency is 5* 1/500e6 = 10 ns

Remaining three words transferred at one word
every 2 ns

Double-Data-Rate (DDR) SDRAM

* Modern SDRAMSs use both rising and falling edges of
the clock ("Double data rate”)

e.g. DDR4 has a clock of 2133 MHz and can support up to
2400 MTransfers / second

R B cracial e MY
Lol il LU TN C' PrducolChim

: v picrom ——
S CTG0¢RFS4213.18FAZ

M.\‘.a‘.m 2C4NNILACP0 % c E 3 p Removal will vold wa
R e : waon-asasharon K200 N

SRR T T T B

8 Gbyte DDR4-2133 ECC 1.2 V RDIMM
(registered dual-inline memory module)

Multi-chip memories (e.g. 2M x 32 SRAM)

21-bit
address
19-bit internal chip address
. Y] p—
A —
S 1 1 - |1 ——
- [~ I~ [~ [~
Ajg
s B | | 1 |
— | 1 | 1 1
N N N N
= l] ! |
— 1| e 1| 1]
= [~ [~] ~r—]
2-bit } - | |]
decoder
o | 1 | 1| |1
N N N N
512K x 8 memory chip] l l |

19-bit ~ - 8-bit data
address — input/output v g \V N\ N/

Chip-select
27

Non-volatile memories

* Non-volatile memories retain their contents even when
the power is removed.

» Slower than volatile memories and special procedure for
writes

 Suitable for implementing long-term storage
* e.g. Solid-State Disk (SSD)

Read-only-memory (ROM)

contents written only once, at the time of manufacture
Bit line

Word line

L

Connected to store a 0
P = —
Not connected to store a 1

PROM, EPROM, and EEPROM

* Cells of a programmable ROM (PROM) chip may be
written after the time of manufacture

* A fuse is burned out with a high current pulse

* An erasable programmable ROM (EPROM) uses a special
transistor instead of a fuse

* Injecting charge allows transistor to turn on
* Erasure requires UV light to remove all charge

* An electrically erasable ROM (EEPROM) can have
individual cells erased with chip in place

Flash Memory \.

* High-density, low-power and low-cost

* For higher density, Flash cells are designed
to be erased in larger blocks, not individually

* Writing individual cells requires reading block, erasing
block, then writing block with changes

* Flash cells can only be written a certain number of times -
wear levelling distributes writes to avoid wearing out one
part of the memory before others

* Widely used in cell phones, digital cameras, and solid-state
drives (e.g., USB memory keys)

Direct Memory Access (DMA)

Textbook 8.4

Direct Memory Access

* CPU Overhead for block transfers
between |/0 and memory is high
because each transfer involves
only a single word or a single byte
(Load/Store instructions plus other
instructions to calculate
addresses)

» Solutions: A direct memory access
(DMA) controller manages the
transfer of larger blocks of data
between memory & 1/0 devices.

e CPU initiates transfer, which is
managed by the DMA unit without
further CPU involvement

Processor

Bridge

Main
memory

PCI bus
Disk/DMA DMA
controller controller
Disk Disk Ethernet
interface

—~_

DMA Controller

 DMA controller is shared,

or in each I/0 device Al 30

* Keeps track of progress Status and control | |

with address counter J
IRQ
* Processor initiates DMA T \
controller activity after
writing information to

special registers Starting address |

(starting address, count,

Read/Write, etc.)
Word count |

* Processor interrupt used
to signal completion

Caches

Textbook 8.5, 8.6

The problem

* Want very large memory that is very fast

« DRAM can be large, but is slow
 SRAM can be fast, but not large

e Solution: use both DRAM and SRAM in a way that the
processor thinks it has a single large memory that is
fast

* The solution should be transparent to the programmer

Library: large, slow access Desk: small, fast access

Unlimited Amounts of Fast Memory?

‘Ideally one would desire an indefinitely large memory capacity
such that any particular..word would be immediately
available..We are...forced to recognize the possibility of
constructing a hierarchy of memories, each of which has
greater capacity than the preceding but which is less quickly
accessible’

A. W. Burks, H. H. Goldstine, and J. von Neumann,
“Preliminary Discussion of the Logical Design of an electronic computing instrument”, 1946

Processor |-= > (Cache [

SRAM

Keep a copy of frequently used data in the small cache memory (fast) so that if
it is needed again it is quickly accessible without going to the large main
memory (slow)

Specialized hardware manages the movement of data between the main
memory and the cache

Transparent to the programmer (load/stores use memory addresses as usual).

Why should software engineers care about this if it is transparent? As we will
see, it works well most of the time, for most programs, but sometimes, having
knowledge of how caches work will help you write better programs.

Increasing

size

Processor

Registers

Primary

cache L1

Secondary
cache L2

Main
memory

Magnetic disk
secondary
memory

Increasing
speed

A

Increasing
cost per bit

A

L1 L2
C C
i 5 c Memory /O bus{ Disk storage
| Registers c c
h h
- . Disk
memao
Register Level 1 Level 2 Level 3 Memoary referencwe
reference Cache Cache Cache reference
reference reference reference
Size: 1000 bytes 64 KB 256 KB 2-4 MB 4-16 GB 4-16TB
Speed. 300 ps 1ns 3-10ns 10-20 ns 50-100 ns 5-10 ms

(a) Memory hierarchy for server

L1
@
CPU a
Storage
| Registers c g
h
2 Flash
Hegister Level 1 Level 2 Memory rn‘;er:‘nﬁr},r
reference Cache Cache reference elerence
reference reference
Size: 500 bytes 64 KB 256 KB 256-512 MB 4-8 GB
Speed: 500 ps 2ns 10-20ns 50-100 ns 25-50 us

(b) Memory hierarchy for a personal mobile device

41

So why does this work?

* This only works because
humans write programs
with structure.

e If you look at a trace of
memory addresses
iIssued by the processor
running typical programs,
you See patterns

e Thisis called the
‘principle of locality” and
IS the reason caches
work.

Temporal locality

Recently accessed items are likely to be
accessed again soon—loop, reuse

Spatial locality

ltems with nearby addresses tend to be
referenced nearby in time—code without
branching, arrays

store blocks of multiple words in the cache

Cache basics

* Processor requests an item (instruction fetch, load)

e |[fitis found in the cache: hit

— deliver the desired item to the processor

e |fitis not found in the cache: miss

- copy the block from main memory into the cache and
then deliver the item to the processor

Hit and miss rate

* For a cache to make sense, most accesses to memory
have to hit the cache. It is not uncommon for caches to
have a hit rate of > 95%

hit rate = # cache hits / # memory accesses

miss rate = 1 - hit rate

44

Valid bit

e Each block has a valid bit, initialized to 0 upon startup to
indicate the block is "empty” — set to T when a block is
copied to the cache

e For a hit, valid bit must be T

e Stale Data:

- e.g. DMA transfer: Disk = Memory
cache may contain stale data from memory, so
valid bits are cleared to O for those blocks

Where to put blocks in the cache?

Main memory is divided into blocks (a.k.a cache lines),
each consisting of several consecutive data elements
(e.g. bytes)

Block in main memory must be transferred to the cache
after a miss

* The mapping function determines the location

* Some mapping functions are simple, and some are more
complex but have higher performance, i.e. result in a higher hit
rate

Direct Mapping

* Every memory block maps to a single cache block

* n = # blocks in cache

memory block j — cache block (j mod n)

Multiple blocks may contend for same location

* New block always overwrites previous block

* If you have multiple frequently accessed blocks that kick eachother out of the
cache, you will have many cache misses and suffer the penalty of having to go to
main memory frequently

) Main
block size = 16 words memory

Cachesize n = 128 blocks

Main memory has 64K bytes (4K blocks)
Memory address is 16-bits Block 1

memory block j —> cache block (j mod 128) l I

Cache Block 127

{
= Block 0 Block 128

tag

Block 1 Block 129

AN
AN
\
\

tae
- Block 127 Block 255

Block 256

Tag Block Word

n

7

+4 I Main memory address

|

block address in memory

Block 257

A
-

-
1

Block 4095

48

Each cache block haOs some space to store
the “tag” (upper 5 bits) of the memory block

that is currently stored in that block

On an access, the tag of the requested address

Is compared with the stored tag.

If they match -> cache hit !

Cache

ta
£ Block 0

tag

Block 1

tag
Block 127

Tag Block

Word

3 7

|

block address in memory

+4 I Main memory address

- A
- 1

Main
memory

Block 0

Block 1

Block 127

Block 128

Block 129

Block 255

Block 256

Block 257

Block 4095

49

Direct mapped

Address Tag |Block idx | Word idx

V Tag Data
il
1
(-3
1
)
(1]
@] =
> O .
o
(]
-
1
1L
-
+ cache line
Y Y
1 —
Mux e
1

hit word

Fully Associative Mapping

* The most flexible
Mmapping: a main
memory block can
be placed into any
cache block

* A block is only
ejected from the
cache if it is full

* The entire block
address is the tag

* Check if a block is in
the cache by doing
an associative search
of ALL the cache
tags in parallel —
complex !

tag

tag

tag

Tag

Cache

Block 0
Block 1

Block 127

Word

12

Main memory address

Main
memory

Block 0

Block 1

1\
A Y
A%)

Block 4095
5

1

Fully associative

Address Tag Word idx
Vv Tag Data Vv Tag Data Tag Data
YY Yy vy
1 — 1 — —
1 1 1
%5 Y Y
1 1 1
Yy """ #
‘:’, Mux
‘Fcache line
\
'Y ¥ MUXx /4
1 '
word

Set-Associative Mapping

* k-way set-associative cache: Group blocks
of cache into sets of k blocks

Cache
* Direct mapping of a memory block to a i {
specific set - any block in the set can be

A

used e { Block 2
28 Block 3
memory block j — cache set (j mod 64)
—_— { e Block 126
e Block 127
* Associative search involves only tags in a
Se-t (k — 2, 4, 8) Tag Set Word
6 6 4

* Direct-mapped : T-way
Associative :n-way

Main memory address

AWAN

Main
memory

Block 0

Block 1

Block 63

Block 64

Block 65

Block 127

Block 128

Block 129

Block 4095

Set-associative

Address‘ Tag | Set idx |Wordr‘dx‘

V Tag Data A Tag Data

J9p033Q

-

cache set / row

Yy """
Mux

Vcache line / block

Mux e

| l

hit word

Replacement policies

* Replacement is trivial for direct mapping,
but need a method for associative mapping

o least-recently-used (LRU) algorithm

* Requires specialized hardware to track accesses to cache
blocks in a set

» Another replacement policy is to remove the “oldest”
block in the set

 Random replacement works surprisingly well

Writes to Cache

* \Write hit:

» Write-through: write to both the cache and the main memory

» Write-back: only write to the cache. Update the main memory only when that cache
block is removed from the cache to make room for another block. A dirty bit (or
modified bit) is set to indicate the cache block has been modified and is no longer
identical to the block in main memory

e Write miss:

* If write-through is being used, then write directly to the main memory on a write miss

* |f write-back is being used, first copy the block containing the addressed word into
the cache, and then write the new word in the cache block

 Flushing the cache in case of Write-Back policy

« Store modified blocks from cache to memory using dirty bit
information

Cache example

* A4x10 array of 16-
bit numbers is
stored inan array A
in column order.

 Normalize the
elements of the first
row of A with
respect to the
average value of the
elements in the row

(7A00)
(7A01)
(7A02)
(7TA03)
(7A04)

(TA24)
(7A25)
(7A26)
(7A27)

A(0,1) «

b
[S S

[
T W S

e e)

e e e

A0, 1)

(EJ?:OA(O, j)) /10

Memory address

10
10
10
10
10

1

[Y S =y

00000OO0COOO
00000O0OCOOI1
000000010
000000011
000000O1O00O0

00001 0701.:0:0
0D eELI 004901
00 0TI0a10
00 01001 L1

fori=0;1;..::9

Contents

A(0,0)

A(1,0)

A(2,0)

A(3,0)

A(0,1)

A(0,9)

A(1,9)

A(2,9)

A(3,9)

57

Cache example

Memory word size = 16 bits

Word-addressable with 16-bit
addresses

Block size = one 16-bit word
Cache size n = 8 blocks
LRU replacement

Consider direct mapped,
associative and 4-way set-
associative caches

(7A00)
(7A01)
(7A02)
(7A03)
(7A04)

(TA24)
(7A25)
(7A26)
(TA27)

SUM:=0
forj:=0to9do
SUM :=SUM + A(0,))
end
AVG := SUM/10
fori:=9 downto O do
A(0,1) := A(0,1)/AVG

end

Memory address
014131071 000000000
0111101000000 01
OC1T1EHO0T00 0000010
O ey 1 1 0.1 030 B0 k001 1
01%111010000060100
O i1 2 OF 0000 T 00 1L 0HD
0:1:3: 13 1 00 0 1000 4: 01
0 1489 2 0 050 O 050 d51 0
0:13:1°E0 0480100111

-=—— Tag for direct mapped —i-|
-+——— Tag for set-associative ——=

|-=————— Tag for associative —————=

Contents

A(0,0)

A(1,0)

A(2,0)

A(3,0)

A(0,1)

A(0,9)

A(1,9)

A(2,9)

A(3.9)

58

Direct-mapped

Block
position

~] O\ Lh & W N =

only 2 hits!

Contents of data cache after pass:

N

j=1

j=9|i=6

A(0,0)

A(0,8)

A(0,6)

A(0,1)

A(0,3)

A(0,5)

A(0,7)

A(0,9)

A(0,7)

A(0,5)

A(0,3)

A(0,1)

59

only 2 misses ! reversing the order of the
seconds loop helps hit the

Assoclative ache

Contents of data cache after pass:

Block
position

0 A(0,0) | A(0,8) | A(0,8) | A(0,8) | A(0,0)

SN N v AW
2
g
=N
—
>
o~
o
=
>
—~
=
NN
—
'
S
-
~—
2
S
NN
—

All desired blocks have even
addresses — all map to Set 0

Set-Associative

6 misses in the second loop

Contents of data cache after pass:

Set0 <

Setl <

j=17

J=3

A(0,0)

A(0,4)

A(0,8)

A(0,1)

A(0,5)

A(0,9)

A(0,2)

A(0,6)

A(0,6)

A(0,3)

A(0,7)

A(0,7)

61

Instruction & Data cache

Processor
Registers

Primary L1
cache

Secondary L9
cache

Processor

Registers

Instruction
cache

Data
cache

Main
memory

Secondary
memory

(e.qg. disk)

A Ll

Y

A

Y

cache

Secondary L2

A

Secondary
memory
(e.q. disk)

Instructions and data are stored in
same memory; however:

« Different access patterns

- repetitions (e.g. loops)

- linear sequences of
instructions

 Instructions are read-only
(mostly)

* |1 separated into data cache
and instruction cache

Secondary storage technology

Textbook 8.70

Secondary storage

e Non-volatile long term storage
« Bottom of memory hierarchy — slow but large capacity
* Managed by the operating system

 Flash memory (SSD) is the technology used in phones,
tablets, and some laptops

» Magnetic disks (hard drives) have lower cost / bit

64

Magnetic Hard Disks

e One or more platters on a common spindle
 Platters are covered with thin magnetic film
e Platters rotate on spindle at constant rate

* Read/write heads in close proximity to surface can
access data arranged in concentric tracks

* Magnetic yoke and magnetizing coil can change or
sense polarity of areas on surface

Read/Write

Rotary head
drive shaft

N

Disk

Access
mechanism

(a) Mechanical structure

Direction of
magnetization

— B~

L J

e S

N

One bit

(c) Bit representation by phase encoding

Air l

Magnetizing

current

|

Magnetic
yoke

/

i

S N

-~

vy

gp

\\

Magnetic
thin film

(b) Read/Write head detail

* Acylinderis alogical set of tracks on a stack of disks that can
be accessed without moving the read/write heads

* Formatting information includes track/sector markers and
error-correcting code (ECC) information

* Filesystem: data structures that the O/S uses to keep track of
files organized on the disk

Sector 3, track n \‘ l Sector 0, track 1
/ Sector 0, track O

Access time

* Seek time = time required to move the read/write head to
the proper track. Depends on the initial position of the head.

 Average values are 5to 8 ms

 [atency (rotational delay) = time to read addressed sector
after the head is positioned over the correct track.

* On average the time for % a rotation of the disk

Access time = seek time + latency

 Flash access time is typically 35 to 100 us (100x faster)

Virtual Memory

Textbook 8.8, 8.9

Virtual Memory

* Physical mem. Capacity < address space size

* Alarge program or many active programs may not be entirely
resident in the main memory

 Use secondary storage (flash or magnetic disk) to hold
portions exceeding memory capacity (“swap file” or “page
file”) — makes the RAM appear to be very large

* Virtual memory is the lowest tier of memory hierarchy

» Magnetic disk (5 ms) is 5 orders of magnitude slower than SDRAM
(15 ns)

* |tis important to manage virtual memory carefully to reduce number
of disk accesses - managed in software (0/S)

Virtual Memory

* Programs written assuming full address space
* Processor issues virtual address (logical address)
* Must be translated into physical address

* Proceed with normal memory operation
when addressed contents are in the memory

* When no current physical address exists, perform actions
to place contents in memory

* The mapping is fully associative (reduce miss rate)

Memory Management Unit

* Implementation of virtual memory relies on a memory
management unit (MMU)

* Maintains virtual = physical address mapping to
perform the necessary translation

* When no current physical address exists, MMU invokes
operating system services

e Causes transfer of desired contents from disk to the
main memory using DMA scheme

« MMU mapping information is also updated

Processor

A
Virtual address
Data MMU
Physical address
Y

Cache
Data I Physical address

Main memory

i DMA transfer

Disk storage

Address Translation

* Use fixed-length unit of pages (2K-16K bytes)

* Larger size than cache blocks

* Disks have high access times, but bandwidths of several MB / s

* For translation, divide address bits into 2 fields

* Lower bits give offset of word within page
 Upper bits give virtual page number (VPN)

* Translation preserves offset bits, but causes VPN bits to be replaced with
page frame bits

* Page table (stored in the main memory) provides information to perform
translation

Page Table

« MMU must know location of page table
* Page table base register has starting address

« Adding VPN to base register contents gives location of
corresponding entry about page

e |f page is in memory, table gives frame bits
» Otherwise, table may indicate disk location

 Control bits for each entry include a valid bit and modified bit
indicating needed write-back

 Also have bits for page read/write permissions

Page table base register

Page table address

Virtual address from processor

|

Virtual page number

PAGE TABLE

N\

AW "

A4 v
Control Page frame
bits in memory

| Y
Page frame I Offset I
l |

'

Physical address in main memory

Translation Lookaside Buffer

« MMU must perform lookup in page table
for translation of every virtual address

 For large physical memory, MMU cannot hold entire
page table with all of its information

* Translation lookaside buffer (TLB) in the MMU holds
recently-accessed entries of page table

» Associative searches are performed on the TLB with
virtual addresses to find matching entries

e [f missin TLB, access full table and update TLB

Virtual address from processor

|

I Virtual page number Offset
I
TLB
Virtual page Control Page frame
number bits in memory
' L] .
No
-t
¥es . .
Miss ’ ’
Hit | ¥
I Page frame Offset

J

Physical address in main memory

Page Faults

* A page fault occurs when a virtual address has no
corresponding physical address

 MMU raises an interrupt for operating system to place
the containing page in the memory

e Operating system selects location using LRU,
performing write-back if needed for old page

* Delay may be long, involving disk accesses, hence
another program is selected to execute

e Suspended program restarts later when ready

What's next

* In the next chapter we will look at how the hardware of
the processor is implemented and how it executes
iInstructions

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	iPad Air
	Memory Technology
	Slide 7
	RAM
	Semiconductor RAM
	Slide 10
	Slide 11
	SRAM
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	DRAM
	Slide 18
	Reading DRAM
	Refresh overhead
	256 Mb Asynchronous DRAM organization (32M x 8)
	Fast Page Mode
	Synchronous DRAMs
	Efficient Block Transfers
	Memory latency and bandwidth
	Double-Data-Rate (DDR) SDRAM
	Multi-chip memories (e.g. 2M x 32 SRAM)
	Non-volatile memories
	Read-only-memory (ROM)
	PROM, EPROM, and EEPROM
	Flash Memory
	Direct Memory Access (DMA)
	Direct Memory Access
	DMA Controller
	Caches
	The problem
	Slide 37
	Unlimited Amounts of Fast Memory?
	Slide 39
	Slide 40
	Slide 41
	So why does this work?
	Cache basics
	Hit and miss rate
	Stale Data
	Where to put blocks in the cache?
	Slide 47
	Slide 48
	Slide 49
	Direct Mapping
	Associative Mapping
	Slide 52
	Set-Associative Mapping
	Slide 54
	Replacement policies
	Slide 56
	Cache example
	Cache example
	Direct-mapped
	Associative
	Set-Associative
	Slide 62
	Secondary storage technology
	Secondary storage
	Magnetic Hard Disks
	Slide 66
	Slide 67
	Access time
	Virtual Memory
	Virtual Memory
	Virtual Memory
	Memory Management Unit
	Slide 73
	Address Translation
	Page Table
	Slide 76
	Translation Lookaside Buffer
	Slide 78
	Page Faults
	What’s next

