
Computer Organization

Memory
ECSE 324

Fall 2020

Prof. Christophe Dubach

Original slides from Prof. Warren Gross. Some material from Hamacher, Vranesic, Zaky, and Manjikian, “Computer Organization and
Embedded Systems, 6th ed”, 2012, McGraw Hill and “Introduction to the ARM Processor using Altera Toolchain”.

2

3

??

4

capacity?

5

Elpida 1 GB LPDDR3 SDRAM - "memory"

Toshiba 16 GB NAND Flash - "storage"

What is the difference between memory and storage?

How do they interact?

What are the different technologies used to implement memory?

“Memory”, “Main Memory”, “RAM”,...
Volatile working memory (loses its
contents when the machine is off) –
addressable

”Storage”, “Capacity (marketing
term!)”, ”Hard disk”, “Hard drive”,
”drive”, “solid-state drive (SSD)”,
”flash”,...

-> non-volatile long-term storage for
files and data. Do not access
through address space, rather
through the operating system which
manages a file system.

iPad Air

Memory Technology
Textbook 8.1, 8.2, 8.3

6

7

Abstraction

RAM

• Memory access time

time from initiation to completion of a word or byte transfer

• Memory cycle time

minimum time delay between initiation of successive
transfers

Random-access memory (RAM)

means that access time is same, independent of location
8

Semiconductor RAM

• Organized as an array of cells, each storing one bit

• Each row of the array stores one memory word

!!! Memory word might be different from processor word !!!

E.g. consider a 16x8 RAM with a 8-bit wordsize and 16 words.

• How many bits does this memory store ?

• How many bits are needed for the memory address?

9

word line

bit lines (bit and it’s complement)

chip select for
multichip system

(one-hot
 code)

14 + 2 (power & ground)
= 16 pins

16x8 RAM

10

1024x1 RAM

11

SRAM

• Static RAM: retains contents as long as power is
applied, but volatile – if power is removed the contents
are destroyed.

• Fast (access time of a few ns), but expensive – each
cell require 6 transistors to store a bit.

• As a result, SRAMs are limited to how large they can be
– typically at most a few Mbits.

• Use to implement “cache” memory, but not the main
memory

12

 NMOS transistor

V G

V D

V S = 0 V

V S = V DD

V D

V G

Closed switch
whenV G =V D

V D = 0 V

Open switch
whenV G = 0 V

V D

Open switch
whenV G =V DD

V D

V DD

Closed switch
whenV G = 0 V

V D =V DD

V DD

 PMOS transistor

13

“ON” ”OFF”

“ON””OFF”

CMOS realization of a NOT gate

on
off

off
on

1
0

0
1

f x T 1 T 2

V f

V DD

V x

T 1

T 2

14

cross-coupled inverters

SRAM Cell

access
transistor

15

CMOS 6T SRAM Cell 16

DRAM

• Dynamic RAM: Retains contents for only a few tens of
milliseconds and must be periodically “refreshed” to
maintain the contents for longer periods.

• Slower than SRAM, but more dense (less expensive) –
the DRAM cell is simpler than the SRAM cell.

• Can implement DRAMs with large capacity (~gigabits)

• Used to implement main memory

17

18

State is presence (“1”) or absence (“0”) of charge in capacitor

A small amount of current flows through transistor even when it is OFF,
resulting in a leak of the stored charge

DRAM Cell

Reading DRAM

• Read: Sense amplifier connected to the bit line detects if the
charge in the capacitor is above a threshold

• If above threshold, the sense amplifier drives the bit line to full
voltage (“1”) and as a result the capacitor is recharged to full
voltage (“1”)

• If below threshold, the sense amplifier pulls the bit line down to
ground (“0”) and the capacitor is discharged fully (“0”)

 reading a DRAM cell refreshes its contents (an entire row is
read and refreshed at the same time)

To refresh the entire DRAM each row in the DRAM must be
periodically read – done by an external memory controller

19

Refresh overhead

• Assume that each row needs to be refreshed every 64
ms, the minimum time between two row accesses is 50
ns and that all rows are refreshed in 8192 cycles

• Read/write operations have to be delayed until refresh is
finished. What is the refresh overhead?

20

256 Mb Asynchronous DRAM organization (32M x 8)

32 Mb = 32 x 220 = 225

25-bit address

14 bits / 11 bits

row/column
addresses are
multiplexed
onto same 14 pins

row address strobe (applied first,
generated by external memory controller)

column address strobe (bar
indicates active low)

21

Fast Page Mode

• In preceding example, all 16,384 cells in a row are
accessed (and also refreshed as a result)

• But only 8 bits of data are actually transferred
for each full row/column addressing sequence

• For more efficient access to data in same row, latches in
sense amplifiers hold cell contents

• For consecutive data, just assert CAS signal and
increment column address in same row

• This fast page mode is useful in block transfers

22

Synchronous DRAMs

• Modern synchronous
DRAM (SDRAM)
uses a clock to
generate internal
timing signals (e.g.
CAS and RAS)

• Memory controller is
integrated on-chip
(built-in refresh
circuit)

• “dynamic” nature of
the chip is invisible to
the user

23

registers buffer the data – can
initiate a new read of the array
while reading out the previous
word from the register

Efficient Block Transfers

• Synchronous DRAM
reduces delay by
having CAS assertion
once for initial column
address

• SDRAM circuitry
increments column
counter and transfers
consecutive data
automatically

• Burst length
determines number of
transfers

Burst length of 4, RAS delay of 2 cycles, CAS delay of 1 cycle

Memory latency and bandwidth

• Memory latency (ns) is
the time for the first
word of a block transfer
to appear on the data
lines

• The time between
subsequent words is
much shorter than the
time needed to transfer
the first word

• The memory bandwidth
(number of bits or bytes
transferred per second)
is a useful performance
measure for a SDRAM

Latency is 5 cycles. If the clock is 500 MHz, the
latency is 5 * 1/500e6 = 10 ns

Remaining three words transferred at one word
every 2 ns

Double-Data-Rate (DDR) SDRAM

• Modern SDRAMs use both rising and falling edges of
the clock (“Double data rate”)

e.g. DDR4 has a clock of 2133 MHz and can support up to
2400 MTransfers / second

8 Gbyte DDR4-2133 ECC 1.2 V RDIMM
(registered dual-inline memory module)

Multi-chip memories (e.g. 2M x 32 SRAM)

27

Non-volatile memories

• Non-volatile memories retain their contents even when
the power is removed.

• Slower than volatile memories and special procedure for
writes

• Suitable for implementing long-term storage

• e.g. Solid-State Disk (SSD)

28

Read-only-memory (ROM)

contents written only once, at the time of manufacture

PROM, EPROM, and EEPROM

• Cells of a programmable ROM (PROM) chip may be
written after the time of manufacture

• A fuse is burned out with a high current pulse

• An erasable programmable ROM (EPROM) uses a special
transistor instead of a fuse

• Injecting charge allows transistor to turn on

• Erasure requires UV light to remove all charge

• An electrically erasable ROM (EEPROM) can have
individual cells erased with chip in place

Flash Memory

• High-density, low-power and low-cost

• For higher density, Flash cells are designed
to be erased in larger blocks, not individually

• Writing individual cells requires reading block, erasing
block, then writing block with changes

• Flash cells can only be written a certain number of times –
wear levelling distributes writes to avoid wearing out one
part of the memory before others

• Widely used in cell phones, digital cameras, and solid-state
drives (e.g., USB memory keys)

Direct Memory Access (DMA)
Textbook 8.4

32

Direct Memory Access

• CPU Overhead for block transfers
between I/O and memory is high
because each transfer involves
only a single word or a single byte
(Load/Store instructions plus other
instructions to calculate
addresses)

• Solutions: A direct memory access
(DMA) controller manages the
transfer of larger blocks of data
between memory & I/O devices.

• CPU initiates transfer, which is
managed by the DMA unit without
further CPU involvement

DMA Controller

• DMA controller is shared,
or in each I/O device

• Keeps track of progress
with address counter

• Processor initiates DMA
controller activity after
writing information to
special registers
(starting address, count,
Read/Write, etc.)

• Processor interrupt used
to signal completion

Caches
Textbook 8.5, 8.6

35

The problem

• Want very large memory that is very fast

• DRAM can be large, but is slow
• SRAM can be fast, but not large

• Solution: use both DRAM and SRAM in a way that the
processor thinks it has a single large memory that is
fast

• The solution should be transparent to the programmer

36

Library: large, slow access Desk: small, fast access

“Ideally one would desire an indefinitely large memory capacity
such that any particular…word would be immediately
available…We are…forced to recognize the possibility of
constructing a hierarchy of memories, each of which has
greater capacity than the preceding but which is less quickly
accessible.”

A. W. Burks, H. H. Goldstine, and J. von Neumann,
“Preliminary Discussion of the Logical Design of an electronic computing instrument”, 1946

Unlimited Amounts of Fast Memory?

38

SRAM DRAM

• Keep a copy of frequently used data in the small cache memory (fast) so that if
it is needed again it is quickly accessible without going to the large main
memory (slow)

• Specialized hardware manages the movement of data between the main
memory and the cache

• Transparent to the programmer (load/stores use memory addresses as usual).

• Why should software engineers care about this if it is transparent? As we will
see, it works well most of the time, for most programs, but sometimes, having
knowledge of how caches work will help you write better programs.

41

So why does this work?

• This only works because
humans write programs
with structure.

• If you look at a trace of
memory addresses
issued by the processor
running typical programs,
you see patterns

• This is called the
“principle of locality” and
is the reason caches
work.

42

Temporal locality

Recently accessed items are likely to be
accessed again soon—loop, reuse

Spatial locality

Items with nearby addresses tend to be
referenced nearby in time—code without
branching, arrays

store blocks of multiple words in the cache

Cache basics

• Processor requests an item (instruction fetch, load)

• If it is found in the cache: hit

– deliver the desired item to the processor

• If it is not found in the cache: miss

– copy the block from main memory into the cache and
then deliver the item to the processor

43

Hit and miss rate

• For a cache to make sense, most accesses to memory
have to hit the cache. It is not uncommon for caches to
have a hit rate of > 95%

hit rate = # cache hits / # memory accesses

miss rate = 1 – hit rate

44

Valid bit

• Each block has a valid bit, initialized to 0 upon startup to
indicate the block is “empty” – set to 1 when a block is
copied to the cache

• For a hit, valid bit must be 1

• Stale Data:

– e.g. DMA transfer: Disk → Memory
cache may contain stale data from memory, so
valid bits are cleared to 0 for those blocks

Where to put blocks in the cache?

Main memory is divided into blocks (a.k.a cache lines),
each consisting of several consecutive data elements
(e.g. bytes)

Block in main memory must be transferred to the cache
after a miss

• The mapping function determines the location

• Some mapping functions are simple, and some are more
complex but have higher performance, i.e. result in a higher hit
rate

46

Direct Mapping

• Every memory block maps to a single cache block

• n = # blocks in cache

 memory block j cache block (→ j mod n)

 Simplest approach: uses a fixed mapping

❌ Multiple blocks may contend for same location

• New block always overwrites previous block

• If you have multiple frequently accessed blocks that kick eachother out of the
cache, you will have many cache misses and suffer the penalty of having to go to
main memory frequently

48

block size = 16 words
Cache size n = 128 blocks
Main memory has 64K bytes (4K blocks)
Memory address is 16-bits

 memory block j → cache block (j mod 128)

block address in memory

49

• Each cache block ha0s some space to store
the “tag” (upper 5 bits) of the memory block
that is currently stored in that block

• On an access, the tag of the requested address
is compared with the stored tag.

• If they match -> cache hit !

block address in memory

Fully Associative Mapping

• The most flexible
mapping: a main
memory block can
be placed into any
cache block

• A block is only
ejected from the
cache if it is full

• The entire block
address is the tag

• Check if a block is in
the cache by doing
an associative search
of ALL the cache
tags in parallel –
complex ! 51

Set-Associative Mapping

• k-way set-associative cache: Group blocks
of cache into sets of k blocks

• Direct mapping of a memory block to a
specific set - any block in the set can be
used

 memory block j → cache set (j mod 64)

• Associative search involves only tags in a
set (k = 2, 4, 8)

• Direct-mapped : 1-way
Associative : n-way

Replacement policies

• Replacement is trivial for direct mapping,
but need a method for associative mapping

• least-recently-used (LRU) algorithm

• Requires specialized hardware to track accesses to cache
blocks in a set

• Another replacement policy is to remove the “oldest”
block in the set

• Random replacement works surprisingly well

Writes to Cache

• Write hit:

• Write-through: write to both the cache and the main memory

• Write-back: only write to the cache. Update the main memory only when that cache
block is removed from the cache to make room for another block. A dirty bit (or
modified bit) is set to indicate the cache block has been modified and is no longer
identical to the block in main memory

• Write miss:

• If write-through is being used, then write directly to the main memory on a write miss

• If write-back is being used, first copy the block containing the addressed word into
the cache, and then write the new word in the cache block

• Flushing the cache in case of Write-Back policy

• Store modified blocks from cache to memory using dirty bit
information

Cache example

• A 4x10 array of 16-
bit numbers is
stored in an array A
in column order.

• Normalize the
elements of the first
row of A with
respect to the
average value of the
elements in the row

57

Cache example

58

• Memory word size = 16 bits

• Word-addressable with 16-bit
addresses

• Block size = one 16-bit word

• Cache size n = 8 blocks

• LRU replacement

• Consider direct mapped,
associative and 4-way set-
associative caches

Direct-mapped

59

only 2 hits!

Associative

60

reversing the order of the
seconds loop helps hit the
cache

only 2 misses !

Set-Associative

61

6 misses in the second loop

All desired blocks have even
addresses – all map to Set 0

Instruction & Data cache

Instructions and data are stored in
same memory; however:

• Different access patterns

– repetitions (e.g. loops)

– linear sequences of
instructions

• Instructions are read-only
(mostly)

• L1 separated into data cache
and instruction cache

Secondary storage technology
Textbook 8.10

63

Secondary storage

• Non-volatile long term storage

• Bottom of memory hierarchy → slow but large capacity

• Managed by the operating system

• Flash memory (SSD) is the technology used in phones,
tablets, and some laptops

• Magnetic disks (hard drives) have lower cost / bit

64

Magnetic Hard Disks

• One or more platters on a common spindle

• Platters are covered with thin magnetic film

• Platters rotate on spindle at constant rate

• Read/write heads in close proximity to surface can
access data arranged in concentric tracks

• Magnetic yoke and magnetizing coil can change or
sense polarity of areas on surface

• A cylinder is a logical set of tracks on a stack of disks that can
be accessed without moving the read/write heads

• Formatting information includes track/sector markers and
error-correcting code (ECC) information

• Filesystem: data structures that the O/S uses to keep track of
files organized on the disk

Access time

• Seek time = time required to move the read/write head to
the proper track. Depends on the initial position of the head.

• Average values are 5 to 8 ms

• Latency (rotational delay) = time to read addressed sector
after the head is positioned over the correct track.

• On average the time for ½ a rotation of the disk

Access time = seek time + latency

• Flash access time is typically 35 to 100 ms (100x faster)

68

Virtual Memory
Textbook 8.8, 8.9

69

Virtual Memory

• Physical mem. Capacity ≤ address space size

• A large program or many active programs may not be entirely
resident in the main memory

• Use secondary storage (flash or magnetic disk) to hold
portions exceeding memory capacity (“swap file” or “page
file”) – makes the RAM appear to be very large

• Virtual memory is the lowest tier of memory hierarchy

• Magnetic disk (5 ms) is 5 orders of magnitude slower than SDRAM
(15 ns)

• It is important to manage virtual memory carefully to reduce number
of disk accesses - managed in software (O/S)

Virtual Memory

• Programs written assuming full address space

• Processor issues virtual address (logical address)

• Must be translated into physical address

• Proceed with normal memory operation
when addressed contents are in the memory

• When no current physical address exists, perform actions
to place contents in memory

• The mapping is fully associative (reduce miss rate !)

Memory Management Unit

• Implementation of virtual memory relies on a memory
management unit (MMU)

• Maintains virtual → physical address mapping to
perform the necessary translation

• When no current physical address exists, MMU invokes
operating system services

• Causes transfer of desired contents from disk to the
main memory using DMA scheme

• MMU mapping information is also updated

Address Translation

• Use fixed-length unit of pages (2K-16K bytes)

• Larger size than cache blocks

• Disks have high access times, but bandwidths of several MB / s

• For translation, divide address bits into 2 fields

• Lower bits give offset of word within page

• Upper bits give virtual page number (VPN)

• Translation preserves offset bits, but causes VPN bits to be replaced with
page frame bits

• Page table (stored in the main memory) provides information to perform
translation

Page Table

• MMU must know location of page table

• Page table base register has starting address

• Adding VPN to base register contents gives location of
corresponding entry about page

• If page is in memory, table gives frame bits

• Otherwise, table may indicate disk location

• Control bits for each entry include a valid bit and modified bit
indicating needed write-back

• Also have bits for page read/write permissions

Translation Lookaside Buffer

• MMU must perform lookup in page table
for translation of every virtual address

• For large physical memory, MMU cannot hold entire
page table with all of its information

• Translation lookaside buffer (TLB) in the MMU holds
recently-accessed entries of page table

• Associative searches are performed on the TLB with
virtual addresses to find matching entries

• If miss in TLB, access full table and update TLB

Page Faults

• A page fault occurs when a virtual address has no
corresponding physical address

• MMU raises an interrupt for operating system to place
the containing page in the memory

• Operating system selects location using LRU,
performing write-back if needed for old page

• Delay may be long, involving disk accesses, hence
another program is selected to execute

• Suspended program restarts later when ready

What’s next

• In the next chapter we will look at how the hardware of
the processor is implemented and how it executes
instructions

80

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	iPad Air
	Memory Technology
	Slide 7
	RAM
	Semiconductor RAM
	Slide 10
	Slide 11
	SRAM
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	DRAM
	Slide 18
	Reading DRAM
	Refresh overhead
	256 Mb Asynchronous DRAM organization (32M x 8)
	Fast Page Mode
	Synchronous DRAMs
	Efficient Block Transfers
	Memory latency and bandwidth
	Double-Data-Rate (DDR) SDRAM
	Multi-chip memories (e.g. 2M x 32 SRAM)
	Non-volatile memories
	Read-only-memory (ROM)
	PROM, EPROM, and EEPROM
	Flash Memory
	Direct Memory Access (DMA)
	Direct Memory Access
	DMA Controller
	Caches
	The problem
	Slide 37
	Unlimited Amounts of Fast Memory?
	Slide 39
	Slide 40
	Slide 41
	So why does this work?
	Cache basics
	Hit and miss rate
	Stale Data
	Where to put blocks in the cache?
	Slide 47
	Slide 48
	Slide 49
	Direct Mapping
	Associative Mapping
	Slide 52
	Set-Associative Mapping
	Slide 54
	Replacement policies
	Slide 56
	Cache example
	Cache example
	Direct-mapped
	Associative
	Set-Associative
	Slide 62
	Secondary storage technology
	Secondary storage
	Magnetic Hard Disks
	Slide 66
	Slide 67
	Access time
	Virtual Memory
	Virtual Memory
	Virtual Memory
	Memory Management Unit
	Slide 73
	Address Translation
	Page Table
	Slide 76
	Translation Lookaside Buffer
	Slide 78
	Page Faults
	What’s next

