
ECSE324 : Computer Organization

Instruction Set Architecture

Christophe Dubach
Fall 2020

Original slides from Prof. Warren Gross – 2017.
Updated by Christophe Dubach – 2020.
Some material from Hamacher, Vranesic, Zaky, and Manjikian, Computer Organization and Embedded Systems, 6 th ed, 2012, McGraw

Hill and Patterson and Hennessy, Computer Organization and Design, ARM Edition, Morgan Kaufmann, 2017, and notes by A. Moshovos

Timestamp: 2020/09/20 15:28:08

1



Disclaimer

Lectures are recorded live and will be posted unedited on mycourses on

the same day.

It is possible (and even likely) that I will (sometimes) make mistakes and

give incorrect information during the live lectures. If you have any

doubts, please check the book, the course webpage or ask on Piazza for

clarifications.

2



Introduction



Instruction Set Architecture

� Each processor has a predefined set of instructions that it

understands called the instruction set

� The instruction set, along with the information about how the

memory is organized, how to access memory, etc,... is called the

programming model or instruction set architecture (ISA).

� The ISA forms a contract between the machine and the

programmer).

� There are a relatively small number of ISAs (e.g. x86-64, ARMv7-A,

Power ISA 3.0, RISC-V), but many processor implementations that

conform to each ISA.

3



Different implementations of an ISA

� The ISA tells you what the processor does. The implementation is

how it does it.

� The ISA is the interface between the hardware and software.

Machine language software (assembly) is portable between two processors

if they implement the same ISA .

4



The ARM Architecture

� A family of RISC processors used in

many devices, especially smartphones

and tablets

� There have been 150 billion ARM

processors shipped as of 2019

(∼15 billion per year in 2015/2016)

� ARM provides the processor design to

chip manufacturers, who fabricate it in

their own products:

� e.g. Apple A5 chip has a dual-core

ARM Cortex-A9 processor

� e.g. Nvidia Tegra 2 SoC also has the

same ARM processor

Nvidia Tegra 2 SoC

source: www.anadtech.com

5

https://www.anandtech.com/show/4144/lg-optimus-2x-nvidia-tegra-2-review-the-first-dual-core-smartphone/3


ARM ISA

ARM has developed several ISAs, and many flavors of implementations

based on each ISA

� ARMv7-A is the ISA for the ARM

Cortex-A9 processors in Apple A5

(iPhone 5) and the Altera Cyclone V

SoC (the one from the labs!)

DE1-SoC Altera Cyclone V

There are other implementations of the ARMv7-A ISA that have different

characteristics: speed, power, cost, etc, ...

6



In the lab you will program an ARM Cortex-A9 processor implementing

the ARMv7-A ISA.

� The “Introduction to the ARM Processor Using Altera Toolchain”

document contains most of what you need for this course.

� Appendix D of the textbook describes ARMv4, which is very similar,

and should be adequate for this course. Some of the terminology is

slightly different and I will use the correct terms in the lecture slides.

� The complete ISA is described in the ARMv7-AR Architecture

Reference Manual.

� The interesting part for us are : A1–A4.

From now on, I will just refer to “ARM ISA” or “ARM assembly

language”.

7

ftp://ftp.intel.com/Pub/fpgaup/pub/Intel_Material/14.0/Tutorials/ARM_A9_intro_alt.pdf
https://developer.arm.com/documentation/ddi0406/cd
https://developer.arm.com/documentation/ddi0406/cd


ARM ISA

Textbook§D.1,D.2



ARM ISA basics

The word word length is 32-bits and processor registers are 32-bits.

The ISA is (mostly) RISC:

� All instructions are 32-bits long.

� Only load and store instructions access memory.

� All arithmetic and logic instructions operate on registers.

� There are some features which normally are seen in CISC ISAs.

8



ARM ISA Memory

� The memory is byte-addressable using 32bit addresses.

� Memory is litte-endian.

� Memory accesses are word-aligned.

� Word, half-word, and byte data transfers to and from processor

registers are supported.

9



ARM programmer-visible registers

Sixteen 32-bit processor registers labelled R0 through R15

� R15 is the program counter (PC)

� R14 is the link register (LR)

� R13 is the stack pointer (SP)

In practice, use only R0...R12 as GPRs (General Purpose Registers) and

only use and refer to R13, R14, and R15 as SP, LR, and PC.

In addition, there is a special status register called the CPSR (Current

Program Status Register) that indicates various useful information (we

will come back to this later).

10



ARM ISA

Textbook§D.1,D.2

Syntax



Assembly language syntax

Assembly language consists of shorthand instruction names called

mnemonics, and a syntax for using them.

A program called an assembler translates the mnemonics into machine

language instructions (we will see this in a future lecture).

Here is a (short) ARM assembly program:

ADD R1, R2 , R3 // R1 <- R2 + R3

� ADD is a mnemonic

� R1 is a destination register; the first operand

� R2 and R3 are source registers; the second and third operand

� // R1 <- R2 + R3 is a comment (not a very useful one)

11



There are different ways to use each instruction.

ADD R1, R2 , R3 // R1 <- R2 + R3

Here, the syntax of the instruction is ADD Rd, Rn, Rm where

� Rd specifies the destination register

� Rn and Rm specify the source registers

ADD R4, R5 , #24 // R4 <- R5 + 24

Here, the syntax of the instruction is ADD Rd, Rn, Imm where

� Rd specifies the destination register

� Rn specifies the source register

� Imm specifies an immediate value (constant)

12



Operands type

We will use the following convention when specifying the instructions:

� Rd always refers to a destination register which is written to.

� Rn or Rm refers to source registers; their value do not change (unless

the register is the same as Rd).

� Imm refers to an immediate value (the maximum number of bits

might be specified, e.g. Imm16 for a 16-bits value).

� Op2 refers to a flexible source operand, which is either:

� an 8-bit immediate value (with optional rotation)

� a register (with optional shift)

13



ARM ISA

Textbook§D.1,D.2

General Data Processing Instructions



Move instructions

These instructions copy data into registers.

MOV Rd, Op2 // MOVes value of Op2 into Rd

MOV Rd, #Imm16 // MOVes immediate 16-bit value into Rd

MVN Rd, Op2 // MoVes complement (Not) of Op2 value

// into Rd

MOVT Rd, #Imm16 // MOVes Top: moves a 16-bit constant into

// the high -order 16 bits of Rd and leaves

// the lower bits unchanged

Why is the last instruction useful?

14



Logic instructions

AND Rd, Rn , Op2 // bitwise AND operation

ORR Rd, Rn , Op2 // bitwise OR operation

EOR Rd, Rn , Op2 // bitwise Exclusive OR (xor) operation

BIC Rd, Rn , Op2 // BIt Clear: Rd <-- Rn & NOT(Op)

15



Shift Instructions

LSL R1, R2 , #5 // Logical shift left

LSR R1, R2 , R3 // Logical shift right

ASR R1, R2 , #4 // Arithmetic shift right

Note: Last operand can be a register or an immediate value.

� Logical ⇒ pad with 0, Arithmetic ⇒ extend sign bit

Logical shift left by 2 of 0000 0011 =

Logical shift right by 1 of 0000 0011 =

Logical shift right by 3 of 1111 0000 =

Arithmetic shift right by 3 of 1111 0000 =

Observation

Shifting left by k = multiplication by 2k

Arithmetic shifting right by k = division by 2k

16



Shift Instructions

LSL R1, R2 , #5 // Logical shift left

LSR R1, R2 , R3 // Logical shift right

ASR R1, R2 , #4 // Arithmetic shift right

Note: Last operand can be a register or an immediate value.

� Logical ⇒ pad with 0, Arithmetic ⇒ extend sign bit

Logical shift left by 2 of 0000 0011 =

Logical shift right by 1 of 0000 0011 =

Logical shift right by 3 of 1111 0000 =

Arithmetic shift right by 3 of 1111 0000 =

Observation

Shifting left by k = multiplication by 2k

Arithmetic shifting right by k = division by 2k

16



Rotate Instruction

Rotate instruction: ROR

ROR R1, R2 , #2 // Circular rotate right

Note: Last operand can be a register or an immediate value.

17



Arithmetic Instructions

Addition/subtraction instructions

ADD R0, R1 , R2 // R0 <-- R1 + R2

ADD R0, R1 , #-24 // R0 <-- R1 + (-24)

SUB R0, R1 , #24 // R0 <-- R1 - (24)

ADD R0, R1 , R2 , LSL#2 // R0 <-- R1 + R2*4

Multiply instruction

MUL R2, R3 , R4 // R2 <-- R3 * R4

Multiply-accumulate instruction

MLA R2, R3 , R4 , R5 // R2 <-- (R3 * R4) + R5

Both multiply instruction only returns the 32 least significant bits!

18



Arithmetic Instructions

Addition/subtraction instructions

ADD R0, R1 , R2 // R0 <-- R1 + R2

ADD R0, R1 , #-24 // R0 <-- R1 + (-24)

SUB R0, R1 , #24 // R0 <-- R1 - (24)

ADD R0, R1 , R2 , LSL#2 // R0 <-- R1 + R2*4

Multiply instruction

MUL R2, R3 , R4 // R2 <-- R3 * R4

Multiply-accumulate instruction

MLA R2, R3 , R4 , R5 // R2 <-- (R3 * R4) + R5

Both multiply instruction only returns the 32 least significant bits!

18



Addressing modes (Textbook§2.4, D3)

The different ways an instruction can specify its operands are called

addressing modes. For instance:

ADD R0, R1 , R2

uses register mode for all of its operands.

ADD R0, R1 , #24

uses register mode for the destination and first source operand, and

immediate mode (#24) for the other source operand.

ADD R0, R1 , R2 , LSL#2

uses scaled register mode for its last operand R2.

19



ARM ISA

Textbook§D.1,D.2

Memory Instructions



Arrays in C (recap)

s h o r t a r r [ 5 ] = {1 , 2 , 3 , 4 ,5}

Implemented as elements one after

the other in memory (watchout for

Endianess!)

For a 1D array, arr[i] is at address:

&arr[0]+sizeof(TYPE)*i where

� & means address of

� &arr[0] is the address of the

first array element, which is

also the start address of the

array, written simply as arr.

ContentAddress

...

0x010x1000

0x000x1001

0x020x1002

0x000x1003

0x030x1004

0x000x1005

0x040x1006

0x000x1007

0x050x1008

0x000x1009

...

Byte view

ContentAddress

...

10x1000

20x1002

30x1004

40x1006

50x1008

...

Half-word

view

20



A first example: Load Instruction

LDR Rd, [Rn] // Rd <-- Mem[Rn], Rn = address in byte

C code:

i n t a r r a y [ 8 ] ; // s i z e o f ( i n t ) = 4 byte

. . .

a r r a y [ i ] ;

Assembly program:

// R0 = variable i, R1 = base address of array

MUL R2, R0 , #4 // R2 = i*4

ADD R3, R1 , R2 // R3 = array + i*4

LDR R4, [R3] // R4 = array[i]

When accesing an array, we need to multiply the index by the element

size. This is a very common case: the actual address we are interested to

access is composed of a base address and an offset (i*4).

21



A first example: Load Instruction

LDR Rd, [Rn] // Rd <-- Mem[Rn], Rn = address in byte

C code:

i n t a r r a y [ 8 ] ; // s i z e o f ( i n t ) = 4 byte

. . .

a r r a y [ i ] ;

Assembly program:

// R0 = variable i, R1 = base address of array

MUL R2, R0 , #4 // R2 = i*4

ADD R3, R1 , R2 // R3 = array + i*4

LDR R4, [R3] // R4 = array[i]

When accesing an array, we need to multiply the index by the element

size. This is a very common case: the actual address we are interested to

access is composed of a base address and an offset (i*4).

21



A first example: Load Instruction

LDR Rd, [Rn] // Rd <-- Mem[Rn], Rn = address in byte

C code:

i n t a r r a y [ 8 ] ; // s i z e o f ( i n t ) = 4 byte

. . .

a r r a y [ i ] ;

Assembly program:

// R0 = variable i, R1 = base address of array

MUL R2, R0 , #4 // R2 = i*4

ADD R3, R1 , R2 // R3 = array + i*4

LDR R4, [R3] // R4 = array[i]

When accesing an array, we need to multiply the index by the element

size. This is a very common case: the actual address we are interested to

access is composed of a base address and an offset (i*4).

21



A first example: Load Instruction

LDR Rd, [Rn] // Rd <-- Mem[Rn], Rn = address in byte

C code:

i n t a r r a y [ 8 ] ; // s i z e o f ( i n t ) = 4 byte

. . .

a r r a y [ i ] ;

Assembly program:

// R0 = variable i, R1 = base address of array

MUL R2, R0 , #4 // R2 = i*4

ADD R3, R1 , R2 // R3 = array + i*4

LDR R4, [R3] // R4 = array[i]

When accesing an array, we need to multiply the index by the element

size. This is a very common case: the actual address we are interested to

access is composed of a base address and an offset (i*4).

21



i n t a r r a y [ 8 ] = {17 , 58 , 79 , 15 , . . . }
. . .

a r r a y [ i ] ;

// R0 = variable i, R1 = base address of array

MUL R2, R0 , #4 // R2 = i*4

ADD R3, R1 , R2 // R3 = base address of array + i*4

LDR R4, [R3] // R4 = array[i]

ContentAddress

...

MUL R2,R0,#40x0000

ADD R3,R1,R20x0004

LDR R4,[R3]0x0008

...

170x1000

580x1004

790x1008

150x100C

...

Example for array base address =0x1000

and i=3 after execution of the load:

Registers

R0 0x00000003

R1 0x00001000

R2 0x0000000C

R3 0x0000100C

R4 0x0000000F

22



Load/Store instructions

The most common ARM load/store instructions for 32-bit words have

the following form:

LDR Rd, EA // Rd <-- Mem[EA]

STR Rm, EA // Mem[EA] <-- Rn

Loads/stores do not specify a memory address explicitly, rather they

generally compute an effective address (EA) from a base address and an

offset.

Effective Address Calculation

EA = base + offset

Calculating an EA is very convenient for implementing common program

structures such as loops and data structures such as arrays as just seen.

23



Offset (addressing) mode

� The base address is always stored in a register (Rn).

� There are three kinds of offset:

� Immediate: a 12-bit number that can badded or subtracted from the

base register value

� Index: the offset is stored in a register (Rm).

� Scaled index: the value in the index register is shifted by a specified

immediate value, then added to or subtracted from the base register.

Effective address:

Name Assembler syntax Address generation

register indirect [Rn] EA = Rn

immediate offset [Rn, #offset] EA = Rn + offset

offset in Rm [Rn, ± Rm, shift] EA = Rn ± shifted(Rm)

24



Coming back to our example

C code:

i n t a r r a y [ 8 ] ;

. . .

a r r a y [ i ] ;

Immediate (with #0): EA = R3

// R0 = variable i, R1 = base address of array

MUL R2, R0 , #4 // R2 = i*4

ADD R3, R1 , R2 // R3 = array + i*4

LDR R4, [R3 ,0] // R4 = array[i]

Index: EA = R1 + R2

MUL R2, R0 , #4 // R2 = i*4

LDR R4, [R1,R2] // R4 = array[i]

Scaled Index: EA = R1 + (R0 << 2) = R1 + (R0× 4)

LDR R4, [R1,R0 ,LSL#2] // R4 = array[i]

25



Coming back to our example

C code:

i n t a r r a y [ 8 ] ;

. . .

a r r a y [ i ] ;

Immediate (with #0): EA = R3

// R0 = variable i, R1 = base address of array

MUL R2, R0 , #4 // R2 = i*4

ADD R3, R1 , R2 // R3 = array + i*4

LDR R4, [R3 ,0] // R4 = array[i]

Index: EA = R1 + R2

MUL R2, R0 , #4 // R2 = i*4

LDR R4, [R1,R2] // R4 = array[i]

Scaled Index: EA = R1 + (R0 << 2) = R1 + (R0× 4)

LDR R4, [R1,R0 ,LSL#2] // R4 = array[i]

25



Coming back to our example

C code:

i n t a r r a y [ 8 ] ;

. . .

a r r a y [ i ] ;

Immediate (with #0): EA = R3

// R0 = variable i, R1 = base address of array

MUL R2, R0 , #4 // R2 = i*4

ADD R3, R1 , R2 // R3 = array + i*4

LDR R4, [R3 ,0] // R4 = array[i]

Index: EA = R1 + R2

MUL R2, R0 , #4 // R2 = i*4

LDR R4, [R1,R2] // R4 = array[i]

Scaled Index: EA = R1 + (R0 << 2) = R1 + (R0× 4)

LDR R4, [R1,R0 ,LSL#2] // R4 = array[i]

25



Same for the store instruction

C code:

i n t a r r a y [ 8 ] ;

. . .

a r r a y [ i ] = 4 4 ;

Scaled Index: EA = R1 + (R0 << 2) = R1 + (R0× 4)

// R0 = variable i, R1 = base address of array

MOV R2, #44 // R2 = 44

STR R2, [R1,R0 ,LSL#2] // array[i] = R2

26



Checkpoint

For each instruction below, calculate the EA (Effective Address) given

the following register content:

R2 = 0x1A4DDA38

R6 = 0x10004008

R8 = 0x10004000

R10 = 0x00000002

LDR R2, [R6, #-12]

LDR R2, [R6, #0x200]

STR R2, [R6, -R8]

STR R2, [R8]

LDR R2, [R8, R10 , LSL #3]

27



Pointers in C (recap)

� A pointer (int* ptr;) is an address

� You can perform pointer arithmetic (ptr+2)

� Including pre-increment (++ptr) and post-increment (ptr++)

� You can dereference a pointer (*ptr), i.e. access the data contained

in memory location pointed by the pointer.

In C, you declare that a variable is a pointer with *

i n t *p ; // p i s a p o i n t e r to an i n t e g e r

// i . e . the memory add r e s s o f a 32− b i t v a r i a b l e

// s i n c e p c o n t a i n s an addre s s , i t i s a l s o 32− b i t s

i n t x ;

i n t a [ 5 ] = {2 0 , 3 5 , 0 , 4 2 , 1 2} ;

p = &a [ 3 ] ; // the add r e s s o f the 4 th e l ement o f a i s s t o r e d i n p

x = *p ; // here , * means i n d i r e c t i o n ( the v a l u e add r e s s ed by p )

// t r i c k y , C u s e s * to mean d i f f e r e n t t h i n g s !

What is the value stored in x?

28



C code

x = *p ;

Assembly equivalent:

LDR R0, p

LDR R1, [R0]

STR R1, x

Why is it important to know the pointer type?

i n t *p ;

Because we can do arithmetic on the pointer:

p = 0 x1000 ;

What is p+1?

29



i n t a r r [ 8 ] = {56 ,26 ,88 ,45 ,−45 ,77 ,98 ,13} ;

p r i n t ( a r r ) ;

p r i n t (& a r r [ 1 ] ) ;

i n t * p t r = &a r r [ 1 ] ;

p r i n t ( p t r ) ;

p r i n t (* p t r ) ;

p r i n t ( p t r +2);

p r i n t (* ( p t r +2)) ;

p r i n t ( p t r ++);

p r i n t ( p t r ) ;

p r i n t (++p r t ) ;

p r i n t ( p t r ) ;

p r i n t (* ( p t r ++));

p r i n t (*(++ p t r ) ) ;

ContentAddress

...

560x1000

260x1004

880x1008

450x100C

-450x1010

770x1014

980x1018

130x101C

...

Assuming arr starts at address 0x1000, what is printed by this C code?

30



Pointers into assembly

C code (without pointer):

i n t a r r [ 8 ] = . . . ;

f o r ( i n t i =0; i <8; i ++) {
v = a r r [ i ] ;

. . .

}

loop body in assembly:

// R0 = i

// R1 = base address of arr

// R2 = v

LDR R2 ,[R1,R0 ,LSL#2] //v=arr[i]

ADD R0,R0 ,#1 //i++

Pointer equivalent C code:

i n t a r r [ 8 ] = . . . ;

i n t * p t r = a r r ;

w h i l e ( pt r <( a r r +8)) {
v = *( p t r ++);

. . .

}

loop body in assembly:

// R0 = ptr

// R1 = v

LDR R1, [R0] // v = *ptr

ADD R0, R0, #4 // ptr=ptr+4

Using a pointer instead arr[i] uses one less register in assembly!

A good compiler will do this transformation to pointer-based code

automatically for you.

31



Pointers into assembly

C code (without pointer):

i n t a r r [ 8 ] = . . . ;

f o r ( i n t i =0; i <8; i ++) {
v = a r r [ i ] ;

. . .

}

loop body in assembly:

// R0 = i

// R1 = base address of arr

// R2 = v

LDR R2 ,[R1,R0 ,LSL#2] //v=arr[i]

ADD R0,R0 ,#1 //i++

Pointer equivalent C code:

i n t a r r [ 8 ] = . . . ;

i n t * p t r = a r r ;

w h i l e ( pt r <( a r r +8)) {
v = *( p t r ++);

. . .

}

loop body in assembly:

// R0 = ptr

// R1 = v

LDR R1, [R0] // v = *ptr

ADD R0, R0, #4 // ptr=ptr+4

Using a pointer instead arr[i] uses one less register in assembly!

A good compiler will do this transformation to pointer-based code

automatically for you.

31



Pointers into assembly

C code (without pointer):

i n t a r r [ 8 ] = . . . ;

f o r ( i n t i =0; i <8; i ++) {
v = a r r [ i ] ;

. . .

}

loop body in assembly:

// R0 = i

// R1 = base address of arr

// R2 = v

LDR R2 ,[R1,R0 ,LSL#2] //v=arr[i]

ADD R0,R0 ,#1 //i++

Pointer equivalent C code:

i n t a r r [ 8 ] = . . . ;

i n t * p t r = a r r ;

w h i l e ( pt r <( a r r +8)) {
v = *( p t r ++);

. . .

}

loop body in assembly:

// R0 = ptr

// R1 = v

LDR R1, [R0] // v = *ptr

ADD R0, R0, #4 // ptr=ptr+4

Using a pointer instead arr[i] uses one less register in assembly!

A good compiler will do this transformation to pointer-based code

automatically for you.

31



Post/Pre-indexed Addressing Mode

Offset addressing mode (register indirect)

// R0 = ptr

// R1 = v

LDR R1, [R0] // v = *ptr

ADD R0, R0, #4 // ptr=ptr+4

Post-indexed addressing mode

(immediate offset)

LDR R1 ,[R0],#4 // v = *(ptr++)

Pre-indexed addressing mode

(immediate offset)

LDR R1 ,[R0 ,#4]! // v = *(++ ptr)

We can use a single instruction to perform both the read and the

increment of the pointer! Very useful in the presence of loops!

32



Post-indexed addressing mode

(immediate offset)

LDR R1 ,[R0],#4 // v = *(ptr++)

Pre-indexed addressing mode

(immediate offset)

LDR R1 ,[R0 ,#4]! // v = *(++ ptr)

Assuming R0=0x1008 before the LDR

instruction executes, what’s the content of

R0 and R1 after the instruction executes?

ContentAddress

...

260x1004

880x1008

450x100C

...

33



Load/Store Addressing Mode Summary (Textbook§2.4, D3)

Name Assembler Syntax Address generation

Register indirect: [Rn] Address = Rn

Offset:

immediate offset [Rn,#offset] Address = Rn + offset

offset in Rm [Rn,±Rm,shift] Address = Rn ± shifted(Rm)

Pre-indexed:

immediate offset [Rn,#offset]! Address = Rn + offset

Rn ← Address

offset in Rm [Rn,±Rm,shift]! Address = Rn ± shifted(Rm)

Rn ← Address

Post-indexed:

immediate offset [Rn],#offset Address = Rn

Rn ← Rn + offset

offset in Rm [Rn],±Rm,shift Address = Rn

Rn ← Rn ± shifted(Rm)

� offset = a signed number (∼13-bit)

� shift = direction # integer

where direction is LSL for left shift or LSR for right shift,

and integer is a 5-bit unsigned number specifying the shift amount

34



Loading/Storing half-word/byte

Dedicated instructions to load/store values smaller than a word:

LDRB (Load Register Byte) – zero padded to 32 bits

LDRH (Load Register Halfword) – zero padded to 32 bits

LDRSB (Load Register Signed Byte) – sign extended to 32 bits

LDRSH (Load Register Signed Halfword) – sign extended to 32 bits

STRB (Store Register Byte) – stores low byte of Rd

STRH (Store Register Halfword) – Store the low halfword of Rd

35



Loading/Storing multiple words

The LDM and STM instructions load and store blocks of words in

consecutive memory addresses into multiple registers.

Registers are always stored by STM in order from largest-to-smallest index

(R15..R0) and by LDM in order from smallest to largest index (R0..R15)

To determine the direction in which memory addresses are computed, you

must use one of the following suffixes for the mnemonic to determine

how to update the address:

� IA – Increment After the transfer

� IB – Increment Before the transfer

� DA – Decrement After the transfer

� DB – Decrement Before the transfer

36



Example:

LDMIA R3 ! , {R4 , R6−R8 , R10}

R4 ← Mem[R3]

R6 ← Mem[R3 + 4]

R7 ← Mem[R3 + 8]

R8 ← Mem[R3 + 12]

R10 ← Mem[R3 + 16]

R3 ← R3 + 20 // increment after

37



PC-relative addressing

� The PC can be used as the base register to

access memory locations in terms of their

distance relative to PC+8.

� The processor updates PC ← PC+4, and

then fetches the next instruction at that

address, which starts executing before

the current instruction is finished, so it

also increments it’s PC by 4.

� This is called pipelining (covered later).

� PC-relative addressing when accessing

variable declared statically.

ContentAddress

...

960x0FF0

-80x0FF4

780x0FF8

260x0FFC

LDR R0, [PC, #-16]0x1000

...

What’s the content of R0 after executing this instruction?

LDR R0, [PC, #-16]

38



ARM ISA

Textbook§D.1,D.2

Data/Text section



Assembler directives

We are almost ready to write out first assembly language program.

The assembler also accepts commands about how it should assemble

your program – these are not machine instructions and are never

translated to executable machine language.

Some common ones (see the Altera documentation for more):

.global symbol // makes symbol visible outside object file

.word expressions // reserves space for words in memory

.text // marks the beginning of the code

.end // marks the end of the code

� Text section = where code goes

� Data section = where data goes (everything except code)

39



Loading 32-bit constants into register

The assembler uses the pseudo-instruction:

LDR Rd, =value // pseudo -instruction

to load a 32-bit value into register Rd.

� If the value fits within the range allowed in a MOV instruction, the

assembler will produce a MOV instruction.

� Otherwise, the assembler places the constant value into a literal

pool in memory, in the data section, where it can be read at runtime:

LDR Rd, [PC, #offset]

where Mem[PC + offset] = value

40



Example of 32-bit constants (and our first programs!)

Loading a small constant:

.global _start

.text

_start: LDR R0 , =0 x00000020

.end

address content code

0x00000000 0xE3A00020 MOV R0, #32

Loading a large constant:

.global _start

.text

_start: LDR R0 , =0 xF0F0F0F0

.end

address content code

0x00000000 0xE51F0004 LDR R0, [PC, #-4]

0x00000004 0xF0F0F0F0 .word 0xF0F0F0F0
41



Declaring variable (with initialization) = label (= address):

.global _start

n: .word 7

_start:

LDR R0, n

LDR R1, =n

address content code

0x00000000 0x00000007 .word 7

0x00000004 0xE54F000c LDR R0, [PC, #-12]

0x00000008 0xE54F1004 LDR R1, [PC, #-4]

0x0000000C 0x00000000 .word 0x00000000

� LDR R0,n is real instruction where n = PC-12

� LDR R1,=n is pseudo-instruction

After execution:

� R0 = 0x00000007

� R1 = 0x00000000

42



ARM ISA

Textbook§D.1,D.2

CPSR & Branching



Current Program Status Register (CPSR)

N Z C V
31 30 29 28 0123467

I F M[4:0]

Condition code flags Interrupts Processor mode

� Condition code flags (bit sets to 1 when condition is true)

� N = Negative, Z = Zero, C = Carry, V = Overflow

� Interrupt flags

� I = IRQ mask bit, F = FRQ (Fast interrupt) mask bit

� Processor mode

� 10000 = User (most of user code)

� 10001 = Serving fast interrupt (when dealing with I/O)

� 10010 = Serving normal interrupt (when dealing with I/O)

� 10011 = Supervisor (used by the Operating System)

No direct control over the CPSR

Some instructions will modify the CPSR as a side-effect, while others

will behave differently depending the CPSR content.

43



Test & Compare instructions

TST Rs, Op2

Zero flag (Z) in the condition code flags set by result of AND(Rs, Op2)

TEQ Rs, Op2

Zero flag (Z) set by result of XOR(Rs, Op2)

CMP Rs, Op2

Sets condition code flags by result of Rs - Op2 (Rs unchanged)

CMN Rs, Op2

Sets condition code flags by result of Rs + Op2 (Rs unchanged)

All these instructions are useful in conjunction with branch instructions.

44



Branch instructions

B{cond} LABEL

� The condition cond specifies a test of the condition code bit.

� If the condition is true, the next instruction executed will be at

address LABEL, the target

� If the conditon is false, the processor simply executes the next

instruction (fallthrough).

45



Condition code

Suffix Meaning CSPR Flags

EQ EQual(zero) Z=1

NE Not Equal (nonzero) Z=0

CS/HS Carry Set/ unsigned Higher or Same C=1

CC/LO Carry Clear / unsigned Lower C=0

MI MInus (negative) N=1

PL PLus (positive or zero) N=0

VS oVerflow Set V=1

VC oVerflow Clear V=0

HI unsigned Higher C=1 AND Z=0

LS unsigned Lower or Same C=0 OR Z=1

GE signed Greater or Equal N=V

LT signed Less Than N!=V

GT signed Greater Than Z=0 AND (N=V)

LE signed Less or Equal Z=1 OR (N!=V)

AL/ ALways (usually ommitted) any

not used

46



Example

C code:

i f ( a>3)

b = 7 ;

e l s e

b = 1 3 ;

Corresponding ARM assembly code:

LDR R0, a

CMP R0, #3 // R0 -#3, only update CPSR

BLE ELSE // if R0 -#3<=0 then branch

MOV R1, #7

B END // branch to END

ELSE: MOV R1, #13

END: STR R1, b

Show the content of each register after each instruction (including the

CPSR), assuming:

1) a = 6,

2) a = 3, and

3) a = 2

47



Setting conditions codes

Test and compare instructions always set the condition codes in the

CPSR, but so do other instructions

Data processing instructions (arithmetic, logic, move) affect the

condition codes if the suffix S is appended to the mnemonic.

Example:

ADDS R0, R1 , R2 // sets condition codes

ADD R0, R1, R2 // does not

Note that the following two instructions are equivalent:

SUBS R0, R1 , R2

CMP R1, R2

Unless the results of the subtraction is required, CMP is preferred since

one less register is used.

48



Conditional execution

Most ARM instructions can be executed conditionally

If the condition is true, then the instruction executes, otherwise the

instruction has no effect

This can save some branches, resulting in compact and fast code.

Instruction format: OP{S}{cond} Rd, Rn, Op2

i f ( a>3)

b = 7 ;

e l s e

b = 1 3 ;

LDR R0, a

CMP R0, #3 //

MOVGT R1 , #7 // if R0 > 3

MOVLE R1 , #13 // if R0 <= 3

STR R1, b

This is a pretty advanced and somewhat ARM-specific technique.

Recommend thinking in terms of branches to keep things simple.

49



ARM ISA

Textbook§D.1,D.2

Putting it all together:

calculating dot product in assembly



Dot product

The dot product of two vectors A and B is defined as:

n−1∑
i=0

A(i) · B(i)

Corresponding C program for two vector of six integers:

v o i d main ( ) {
i n t n = 6 ;

i n t v e c t o r A [ 6 ] = {5 , 3 , −6, 19 , 8 , 1 2} ;

i n t v e c t o r B [ 6 ] = {2 , 14 , −3, 2 , −5, 3 6} ;

i n t dotP ;

i n t i ;

dotP = 0 ;

f o r ( i = 0 ; i<n ; i ++)

dotP += v e c t o r A [ i ] * v e c t o r B [ i ] ;

p r i n t f ( ”Dot p r o d u c t = %d\n” , dotP ) ;

}

50



C variable declarations:

i n t n = 6 ;

i n t v e c t o r A [ 6 ] = {5 , 3 , −6, 19 , 8 , 12} ;

i n t v e c t o r B [ 6 ] = {2 , 14 , −3, 2 , −5, 36} ;

i n t dotP ;

i n t i ;

Assembly memory allocation:

n : . word 6

v e c t o r A : . word 5 ,3 ,−6 ,19 ,8 ,12

v e c t o r B : . word 2 ,14 ,−3 ,2 ,−5 ,36

dotP : . s p a c e 4

// i w i l l be s t o r e d i n a r e g i s t e r , no memory a l l o c a t i o n needed

� .word a b c ...

allocate storage for 1 or more words (4 byte each) and initialize with

the values a,b, c, ...

� .space 4

allocate 4 bytes without initialization

� n, vectorA, ... are addresses corresponding to the start of the

allocated space

51



Loop:

dotP = 0 ;

f o r ( i = 0 ; i<n ; i ++)

dotP += v e c t o r A [ i ] * v e c t o r B [ i ] ;

MOV R3 , #0 // r e g i s t e r R3 w i l l accumulate t h e p r o d u c t

LDR R0 , =v e c t o r A // R0 = v e c t o r A s t a r t a d d r e s s ( pseudo−i n s t r u c t i o n )

LDR R1 , =v e c t o r B // R1 = v e c t o r B s t a r t a d d r e s s ( pseudo−i n s t r u c t i o n )

LDR R2 , n // R2 i s c o n t e n t o f memory a t a d d r e s s n ( R2=6)

MOV R6 , #0 // i t e r a t i o n v a r i a b l e i

LOOP:

CMP R6 , R2 // i−n

BGE END // i>=n ?

LDR R4 , [ R0 ] , #4 // post−i n d e x mode

LDR R5 , [ R1 ] , #4 // post−i n d e x mode

MLA R3 , R4 , R5 , R3 // R3 = ( R4*R5)+R3

ADD R6 , R6,#1 // i++

B LOOP

END:

STR R3 , dotP

52



Alternative approach using SUBS:

dotP = 0 ;

i = n ;

do {
dotP += v e c t o r A [ i ] * v e c t o r B [ i ] ;

i−−;

} w h i l e ( i >0) // assumes t h e r e i s a t l e a s t one e l ement i n each a r r a y

MOV R3 , #0 // r e g i s t e r R3 w i l l accumulate t h e p r o d u c t

LDR R0 , =v e c t o r A // R0 = v e c t o r A s t a r t a d d r e s s ( pseudo−i n s t r u c t i o n )

LDR R1 , =v e c t o r B // R1 = v e c t o r B s t a r t a d d r e s s ( pseudo−i n s t r u c t i o n )

LDR R2 , n // R2=6 ( R2 i s out l o o p i t e r a t i o n v a r i a b l e i )

LOOP:

LDR R4 , [ R0 ] , #4 // post−i n d e x mode

LDR R5 , [ R1 ] , #4 // post−i n d e x mode

MLA R3 , R4 , R5 , R3 // R3 = ( R4*R5)+R3

SUBS R2 , R2,#1 // decrement c o u n t e r and s e t c o n d i t i o n f l a g s

BGT LOOP // i >0 ?

STR R3 , dotP

� One less register used

� 5 vs 7 instructions in the loop body

53



Last bit, printing the result:

p r i n t f ( ”Dot p r o d u c t = %d\n” , dotP ) ;

Use a call to a sub-routine to print the results. This usually requires an

operating system to print information on a terminal, or direct access an

I/O device in assembly (e.g. a screen). We will see that in another

lecture.

54



Full dot product code in ARM assembly

. g l o b a l s t a r t // t e l l s t h e a s s e m b l e r / l i n k e r where to s t a r t e x e c u t i o n

n : . word 6

v e c t o r A : . word 5 ,3 ,−6 ,19 ,8 ,12

v e c t o r B : . word 2 ,14 ,−3 ,2 ,−5 ,36

dotP : . s p a c e 4

s t a r t :

MOV R3 , #0 // r e g i s t e r R3 w i l l accumulate t h e p r o d u c t

LDR R0 , =v e c t o r A // R0 = v e c t o r A s t a r t a d d r e s s ( pseudo−i n s t r u c t i o n )

LDR R1 , =v e c t o r B // R1 = v e c t o r B s t a r t a d d r e s s ( pseudo−i n s t r u c t i o n )

LDR R2 , n // R2=6 ( R2 i s out l o o p i t e r a t i o n v a r i a b l e i )

LOOP:

LDR R4 , [ R0 ] , #4 // post−i n d e x mode

LDR R5 , [ R1 ] , #4 // post−i n d e x mode

MLA R3 , R4 , R5 , R3 // R3 = ( R4*R5)+R3

SUBS R2 , R2,#1 // decrement c o u n t e r and s e t c o n d i t i o n f l a g s

BGT LOOP // i >0 ?

STR R3 , dotP

STOP:

B STOP // i n f i n i t e l o o p whe done

55



ARM ISA

Textbook§D.1,D.2

Subroutine calls

Textbook§2.6,2.7,D.4.8



Subroutines

It is usual programming practice to reuse blocks of code in a subroutine

(i.e. procedure, function, method) that can be called from many places

in a program.

i n t add3 ( i n t a , i n t b , i n t c ) {
r e t u r n a + b + c ;

}

v o i d main ( ) {
i n t sum = 0 ;

sum += add3 ( 1 , 2 , 3 ) ;

sum += 1 0 ;

sum += add3 ( 1 0 , 20 , 3 0 ) ;

p r i n t f ( ”Sum = %d\n” , sum ) ;

}

56



� We should be able to call a

subroutine from anywhere in our

program, i.e. change the PC so

that the routine is executed.

� A subroutine must be able to

return from subroutine, i.e. change

the PC so that execution continues

immediately after the point where

it was called.

� We should be able to pass

parameters (or arguments) that

may take different values across

different calls.

� A subroutine must be able to

return a value.

i n t add3 ( i n t a , i n t b , i n t c )

{
r e t u r n a + b + c ;

}

v o i d main ( ) {
i n t sum = 0 ;

sum += add3 ( 1 , 2 , 3 ) ;

sum += 1 0 ;

sum += add3 ( 1 0 , 20 , 3 0 ) ;

p r i n t f ( ”Sum = %d\n” , sum ) ;

}

57



Calling and returning

A subroutine call is implemented with the Branch and Link instruction BL

that stores the address of the next instruction (return address) in the link

register LR (R14).

BL addr // LR <- PC +4; PC <- addr

To return from subroutine, branch to the address stored in the link

register with BX instruction (branches to the address stored in a register).

BX Rn // Pc <- Rn

C code:

boo ( ) {
coo ( ) ;

. . .

}
coo ( ) {

. . .

r e t u r n ;

}

ARM assembly:

boo: BL coo // LR <- PC +4; PC <- coo

...

coo: ...

BX LR // PC <- LR

58



Multiple nested calls

boo ( ) {
coo ( ) ;

B1 : doo ( ) ;

B2 : r e t u r n ;

}
coo ( ) {

doo ( ) ;

C : r e t u r n ;

}
doo ( ) {

r e t u r n ;

}

� The calls are nested, i.e. boo calls coo, which calls

doo. If we save the return address when boo calls coo

in LR, then when we are in coo, the return address we

save when calling doo will overwrite LR, and we loose

the return address back to boo!

� doo() is called from two different places, and is

expected to return to different places for each call.

� How do we remember the return addresses for each

call, in the correct order ? i.e. the reverse call order.

boo calls coo save B1

coo calls doo save C

doo returns to coo PC ← C

coo returns to boo PC ← B1

boo calls doo save B2

doo returns to boo PC ← B2

Which data structure shall we use to

save these addresses?

59



We need a way to recall return addresses in

the reverse order they were saved (and later,

also their parameters and return values).

We will use a Last-in-First-out (LIFO) data

structure called a stack.

source: Mk2010 / CC 4.0 BY-SA

60

https://commons.wikimedia.org/wiki/File:A_stack_of_empty_sushi_plates_at_a_conveyor_belt_sushi_restaurant_in_Taiwan.jpg


Stack operations

� push(value) : adds a new element on the top of the stack (TOS)

� value = pop : removes the top element

� value = peek(distance) : returns the value of an element at a

distance relative to TOS. peek(0) returns the element at the TOS.

source: Maxtremus / CC0

61

https://commons.wikimedia.org/w/index.php?curid=44458752


ARM Memory layout

� The heap starts at lower addresses and grows

“downward”.

� The bottom of stack is at a fixed address and

the top of stack grows “upward”, towards

lower memory addresses.

free space

stack

heap

text

data

0xffffffff

0x00000000

62



Stack in ARM

� The stack is used to support

subroutines.

� The data elements on the stack

are always words.

� Register R13 is used as a stack

pointer to point to TOS, also

called SP.

-28 SP (top of stack)

17

739

...

... stack bottom

63



Stack operations

Push from Rj

STR Rj, [SP, #-4]!

SP ← SP - 4

Mem[SP] ← Rj

Pop into Rj

LDR Rj, [SP], #4

Rj ← Mem[SP]

SP ← SP + 4

Peek(i) into Rj

LDR Rj, [SP, #const]

where const = i ∗ 4

Rj ← Mem[SP+const]

-28 SP

17

739

...

Assuming Rj=19 and i=2, what’s the content

of the stack, registers Rj and SP after each

instruction executes?

(consider them separately)

64



Pushing/Popping multiple elements

Often, several elements needs to be pushed/popped onto/from the stack.

There are two pseudoinstructions that are useful:

� PUSH {R1, R3-R5} is a pseudoinstruction equivalent to

STMDB SP!, R1, R3-R5

(R1 ends up at the top of the stack)

� POP {R1, R3-R5} is a pseudoinstruction equivalent to

LDMIA SP!, R1, R3-R5

(top of the stack ends up in R1)

65



Multiple nested calls

main ( ) {
boo ( ) ;

A : . . . ;

}
boo ( ) {

push (LR ) ;

coo ( ) ;

B1 : doo ( ) ;

B2 : LR = pop ( ) ;

r e t u r n ;

}
coo ( ) {

push (LR ) ;

doo ( ) ;

C : LR = pop ( ) ;

r e t u r n ;

}
doo ( ) {

r e t u r n ;

}

If you are a subroutine that will call another

subroutine, follow this convention:

� Before you call anybody: Push the return

address stored in LR on the stack

� When you are done calling: Pop the return

address off the stack into LR

Action Stack (TOS on left) LR

main calls boo A

boo saves LR A A

boo calls coo A B1

coo saves LR B1 A B1

coo calls doo B1 A C

doo returns B1 A C

coo restores LR A B1

coo returns A B1

boo calls doo A B2

doo returns A B2

boo restores LR A

boo returns A

66



Passing parameters and return values

For a small number of parameters you can use the ARM calling

convention: use R0 – R3 for passing parameters, and use R0 for the

return value.

i n t add3 ( i n t a , i n t b , i n t c ) {
r e t u r n a + b + c ;

}

MOV R0, #1

MOV R1, #2

MOV R2, #3

STR LR, [SP, #-4]! // save return address

BL add3

STR R0, SUM // return value is in R0

LDR LR, [SP], #4 // restore return address

...

add3: ADD R0, R0, R1

ADD R0, R0, R2

BX LR

67



Callee-save convention

add3: ADD R0, R0, R1

ADD R0, R0, R2

BX LR

� In the previous example, the callee overwrote R0, which was OK,

since the caller knew that the return value would be in R0.

� In general, the caller may need the register values after the callee

returns, so the rule is a callee is responsible for leaving the registers

as it found them.

Callee-save convention:

A subroutine should save any registers it wants to use on the stack and

then restore the original values to the registers after it is finished using

them.

68



Passing parameters on the stack

When you have more than 4 parameters, you can pass 4 in registers, and

the additional ones on the stack. Or you could pass all parameters and

the return value on the stack. Passing parameters by registers will always

be faster.

When you want to pass large data structure which does not fit into four

words, you may also have to use the stack. Example:

s t r u c t l a r g e D a t a S t r u c t {
i n t a ;

i n t b ;

i n t c ;

i n t d ;

i n t e ;

}

Let’s illustrate how to pass everything on the stack. Write a program to

sum a list of numbers. The number of entries in the list is stored in the

variable N and the list is stored starting at address ARRAY.
69



ARRAY: . word 6 , 5 , 4 , 3 , 2 , 1 , 1 4 , 1 3 , 1 2 , 1 1 , 1 0 , 9 , 8 , 7

N: . word 14

SUM: . s p a c e 4

. g l o b a l s t a r t

s t a r t : LDR R0 , =ARRAY // R0 p o i n t s to ARRAY

LDR R1 , N // R1 c o n t a i n s number o f e l e m e n t s to add

PUSH {R0 , R1 , LR} // push p a r a m e t e r s and LR

BL l i s t a d d // c a l l s u b r o u t i n e

LDR R0 , [ SP , #4] // g e t r e t u r n v a l u e from s t a c k

STR R0 , SUM // s t o r e i n memory

LDR LR , [ SP , #8] // r e s t o r e LR

ADD SP , SP , #12 // remove params and LR from s t a c k

s t o p : B s t o p

l i s t a d d : PUSH {R0−R3} // c a l l e e−s a v e r e g i s t e r s l i s t a d d u s e s

LDR R1 , [ SP , #20] // l o a d param N from s t a c k

LDR R2 , [ SP , #16] // l o a d param ARRAY from s t a c k

MOV R0 , #0 // c l e a r R0 ( sum )

l o o p : LDR R3 , [ R2 ] , #4 // g e t n e x t v a l u e from ARRAY

ADD R0 , R0 , R3 // form t h e p a r t i a l sum

SUBS R1 , R1 , #1 // decrement l o o p c o u n t e r

BGT l o o p

STR R0 , [ SP , #20] // s t o r e sum on s t a c k , r e p l a c i n g N

POP {R0−R3} // r e s t o r e r e g i s t e r s

BX LR

70



Passing by value / reference

Recap from C:

� Passing by value: a copy of the value is

passed to the caller. If the copy is

modified, no effect on the callee side.

� Passing by reference: an address in

memory where the value is stored is

passed. The caller may modify the

value.

i n t add3Val ( i n t a ) {
a = a +3;

r e t u r n a ;

}
v o i d add3Ref ( i n t * a ) {

*a = (* a)+3

}
v o i d main ( ) {

i n t i =77;

i n t j ;

j = add3Val ( i ) ;

p r i n t ( i ) ;

p r i n t ( j ) ;

add3Ref(& i ) ;

p r i n t ( i ) ;

p r i n t ( j ) ;

}

71



ARRAY: .word 6,5,4,3,2,1,14,13,12,11,10,9,8,7

N: .word 14

...

LDR R0, =ARRAY // R0 points to ARRAY

LDR R1, N // R1 contains the number of scores

PUSH {R0 , R1 , LR} // push parameters and LR

BL listadd // call subroutine

� The parameter N was passed by value, i.e. the actual value of N

(14) was passed to the subroutine.

� The parameter ARRAY was passed by reference, i.e. a pointer to the

first element of the array was passed

72



Stack frame

� The subroutine can also allocate local

variables, only accessible by the subroutine, on

the stack

� Using a frame pointer (usually R11) gives a

consistent reference to parameters [FP,

#const] and local variables [FP, #-const],

which move around relative to the SP.

� When nesting, the stack frame also includes

the return address and frame pointer

� FP not scrictly required, mainly used to make

assembly program easier to write, and to help

with the debugger.

� FP remains constant while in the same

subroutine

...

saved R4 SP

saved R3

saved R2

localvar3

localvar2

localvar1

saved LR

saved FP FP

param1

param2

param3

param4

... old TOS

...

73



ARM Cheatsheet



Reading the cheatsheet

https://developer.arm.com/documentation/qrc0001/m/

74

https://developer.arm.com/documentation/qrc0001/m/


ARM Instruction Encoding



ARM Assembly vs. Binary

The machine language instruction are encoded as binary of 32 bits per

instruction (ARM ISA is RISC).

The binary representation of an instruction is divided into fields. Each

field contains some information that encodes information about the

instruction.

General format for most instructions:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Cond

source: https://alisdair.mcdiarmid.org/arm-immediate-value-encoding/

75

https://alisdair.mcdiarmid.org/arm-immediate-value-encoding/


Condition field

Cond. field Suffix Meaning CSPR Flags

0000 EQ EQual(zero) Z=1

0001 NE Not Equal (nonzero) Z=0

0010 CS/HS Carry Set/ unsigned Higher or Same C=1

0011 CC/LO Carry Clear / unsigned Lower C=0

0100 MI MInus (negative) N=1

0101 PL PLus (positive or zero) N=0

0110 VS oVerflow Set V=1

0111 VC oVerflow Clear V=0

1000 HI unsigned Higher C=1 AND Z=0

1001 LS unsigned Lower or Same C=0 OR Z=1

1010 GE signed Greater or Equal N=V

1011 LT signed Less Than N!=V

1100 GT signed Greater Than Z=0 AND (N=V)

1101 LE signed Less or Equal Z=1 OR (N!=V)

1110 AL/ ALways (usually ommitted) any

1111 not used

76



Data processing instructions encoding

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Cond I00 0 1 0 0 S Rn Rd Operand2

source: https://alisdair.mcdiarmid.org/arm-immediate-value-encoding/

Examples:

ADDGES R1, R2, R3

Cond=1010, I=0, S=1, Rn=0010, Rd=0001, Operand2[3-0]=0011

ADD R1, R2, #15

Cond=1110, I=0, S=1, Rn=0010, Rd=0001, Operand2=000000001111

Why are the register fields 4-bit wise?

77

https://alisdair.mcdiarmid.org/arm-immediate-value-encoding/


Immediate value encoding

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Cond I00 0 1 0 0 S Rn Rd Operand2

source: https://alisdair.mcdiarmid.org/arm-immediate-value-encoding/

12 bits available to encode immediate value. However, the largest value

is not what you think it might be.

The ARM ISA has a very clever way of generating a lot of useful 32-bit

constants: 16 possible rotations of an 8-bit value

11 10 9 8 7 6 5 4 3 2 1 0

Rotate Immediate

source: https://alisdair.mcdiarmid.org/arm-immediate-value-encoding/

78

https://alisdair.mcdiarmid.org/arm-immediate-value-encoding/
https://alisdair.mcdiarmid.org/arm-immediate-value-encoding/


31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0Rotation

7 6 5 4 3 2 1 00x0

7 6 5 4 3 21 00x1

7 6 5 43 2 1 00x2

7 65 4 3 2 1 00x3

7 6 5 4 3 2 1 00x4

7 6 5 4 3 2 1 00x5

7 6 5 4 3 2 1 00x6

7 6 5 4 3 2 1 00x7

7 6 5 4 3 2 1 00x8

7 6 5 4 3 2 1 00x9

7 6 5 4 3 2 1 00xA

7 6 5 4 3 2 1 00xB

7 6 5 4 3 2 1 00xC

7 6 5 4 3 2 1 00xD

7 6 5 4 3 2 1 00xE

7 6 5 4 3 2 1 00xF

source: https://alisdair.mcdiarmid.org/arm-immediate-value-encoding/

Rotations of an even number of times in a 32-bit word (0, 2, ..., 30)
https://alisdair.mcdiarmid.org/arm-immediate-value-encoding/

79

https://alisdair.mcdiarmid.org/arm-immediate-value-encoding/
https://alisdair.mcdiarmid.org/arm-immediate-value-encoding/


Load/Store instructions encoding

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Cond OPcode S Rn Rd Operand2

Rn=base

Operand2=Offset or Rm, if Rm, the lower four bits is the register

number and uppper bits is the amount of shifting.

Note that:

� Not every addressing mode is available for every load/store

instruction.

� The range of permitted immediate values and the options for scaled

registers vary from instruction to instruction.

80



Branch instructions encoding

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Cond L offset1 0 1

Since the offset field is limited to 24-bit, the branch target address is

relative to the current value of PC and is left-shifted by 2 since

instructions are always 4 byte wide. L=1 is used for the BL instruction.

...

BEQ LOCATION100010

Fallthrough instruction100410

...updated PC = 100810

...

Target instructionLOCATION = 110010

...

In this example, we want to jump to

address 110010 which is 100 bytes away.

The relative offset is 92 bytes (100− 8)

= 23 words

= 0000 0000 0000 0000 0001 0111.

The condition field is EQ = 0000.

81



Conclusions

This set of lectures has presented the ARM ISA and introduced:

� the major classes of instructions you will encounter

� the different addressing mode used by instructions

� the way ARM branches work

� the way subroutine calls are implemented in assembly with the stack

� the encoding of instructions in binary

The next lecture will:

� look at the software toolchain used to translate high-level languages

to machine code;

� the role of the operating system software.

82


	Introduction
	ARM ISA Textbook§D.1,D.2
	Syntax
	General Data Processing Instructions
	Memory Instructions
	Data/Text section
	CPSR & Branching
	Putting it all together:  calculating dot product in assembly
	Subroutine calls Textbook§2.6,2.7,D.4.8

	ARM Cheatsheet
	ARM Instruction Encoding

