
Computer Organization

Input/Output

ECSE 324

Fall 2020

Prof. Christophe Dubach

Source material from Prof. Warren Gross. Some material from Hamacher, Vranesic, Zaky, and Manjikian, “Computer Organization and
Embedded Systems, 6th ed”, 2012, McGraw Hill and “Introduction to the ARM Processor using Altera Toolchain”.

Input / Output

2

Input / Output

3Ethernet networking

USB (universal serial bus)

WiFi

Input / Output

4

sensors actuators

Software aspects of I/O:
Memory Mapped Registers
Textbook 3.1, D.8.1

5

Accessing I/O Devices

• Computer system
components
communicate through an
interconnection network

• From a programmers
point of view, locations
implemented as I/O
registers within same
address space

I/O Device Interface

• An I/O device interface is a
circuit between a device and
the interconnection network

• Provides the means for data
transfer and exchange of
status and control information

• Includes data, status, and
control registers accessible
with load and store
instructions

• Memory-mapped I/O enables
software to view these
registers as locations in
memory

Memory

0x4000

0x4010

Memory

...

...

ke
yb

oa
rd

d
is

p
la

y

0x4000

0x4010

Memory

...

...

ke
yb

oa
rd

d
is

p
la

y

• These I/O device registers are
memory-mapped

Memory-mapped I/O

11

Locations associated with I/O devices are accessed with Load and Store
instructions

LDR R2, =0x4000 // R2 points to the data reg

LDR R1, [R2] // read from the data reg

STR R1, [R2] // write to the data reg

I/O synchronization

● E.g. Read keyboard characters, store in memory, and display on screen

● A keyboard’s data input rate (keyboard to processor) is likely to be only a
few characters per second – limited by user’s typing speed.

● The rate of character output (processor to display) is likely to be much
faster - say thousands of characters per second.

● The processor can execute billions of instructions per second – much
faster than the display can accept data!

• Need a way to synchronize the timing of an I/O device with the processor.

• How do you know at what time an input device has data ready for the
processor to read?

• How do you know at what time the output device is ready to receive data
written by the processor?

Software aspects of I/O:
Polling
Textbook 3.1, D.8.1

13

Programmed-controlled I/O

• Assume that the I/O devices have a way to send a ready signal to the
processor

• For keyboard, indicates character can be read so processor uses a load to access
data register

• For display, indicates character can be sent so processor uses a store to access
data register

• The ready signal in each case is a status flag in status register that is
polled by the processor.

Polled I/O: reading

• Assume a device with 8-bit I/O registers.

• For example, keyboard has KIN status flag in bit b1 of KBD_STATUS
register at address 0x4004

• Processor polls KBD_STATUS register, checking whether KIN flag is 0 or 1

• If KIN is 1, processor reads KBD_DATA register

Polled I/O: writing

• For example, display has DOUT status flag in bit b2 of DISP_STATUS register
at address 0x4014

• Processor polls DISP_STATUS register, checking whether DOUT flag is 0 or 1

• If DOUT is 1, processor writes DISP_DATA register

• You have to poll a device’s status register for each time you read or write it’s
data register

Wait Loop for Polling I/O Status

• Program-controlled I/O implemented with a wait loop for polling keyboard
status register:

• Keyboard circuit places character in KBD_DATA and sets KIN flag in
KBD_STATUS

• Circuit clears KIN flag when KBD_DATA is read

• Assume that the address for KBD_DATA (0x4000) has been loaded into R1.

READWAIT: LDRB R3, [R1, #4] // read byte from KBD_STATUS
TST R3, #2 // check the value of KIN
BEQ READWAIT // branch when KIN=0
LDRB R3, [R1] // read from KBD_DATA

Wait Loop for Polling I/O Status

• Display circuit sets DOUT flag in DISP_STATUS after previous character has
been displayed

• Circuit automatically clears DOUT flag when DISP_DATA register is written

• Assume that the address for DISP_DATA has been loaded into R2.

WRITEWAIT: LDRB R4, [R2, #4] // read byte from DISP_STATUS
TST R3, #4 // check the value of DOUT
BEQ WRITEWAIT // branch when DOUT=0
STRB R3, [R2] // write to DISP_DATA

Example

• Consider complete program that use polling to read, store, and
display a line of characters (“echo” to the display).

• Program finishes when carriage return (CR) character is entered on
keyboard

• Assume R0 points to the first byte of the memory area where the
line is to be stored.

 LDR R1, =0x4000 // KBD
 LDR R2, =0x4004 // DISP

READ: LDRB R3, [R1, #4] // load KBD_STATUS byte and
 TST R3, #2 // wait for character

BEQ READ

LDRB R3, [R1] // read the character and
STRB R3, [R0], #1 // store it in memory

ECHO: LDRB R4, [R2, #4] // load DISP_STATUS byte and
TST R4, #4 // wait for display
BEQ ECHO // to be ready

STRB R3, [R2] // send character to display
 TEQ R3, #CR // if not carriage return

BNE READ // read more characters

20

Software aspects of I/O:
Interrupts
Textbook 3.2, D.7, D.8.2

21

Example

Waiting for a pizza when you are studying for exams

22

23

polling

24interrupt

Interrupts

• Polling with a wait loop has a big drawback: processor is kept busy.

• With long delay before I/O device is ready, cannot perform other
useful computation

• Instead of using a wait loop, an alternative is to let the
I/O device alert the processor when it is ready

• Hardware sends an interrupt-request signal to the processor at the
appropriate time

• Meanwhile, processor performs useful tasks

Example of Using Interrupts

• Consider a task with extensive computation and periodic display
of current results (every 10s)

• A timer circuit can be used for the desired 10s interval - it can
send the processor a signal every 10s

• Polling would spend each 10s interval waiting for the signal, with
no time doing computation.

• The timer can raise an interrupt-request signal to processor every
10s

• Processor completes instruction i, and then suspends COMPUTE execution
to execute DISPLAY, then returns to execute instruction i+ 1

• DISPLAY is short; time is mostly spent in COMPUTE

Interrupt-Service Routine

• DISPLAY is an interrupt-service routine (ISR).

• Unlike a subroutine, it can can be executed at any time, not in
response to a call.

• For example, assume interrupt signal asserted when processor is
executing instruction i

• Instruction completes, then PC saved to temporary location before
executing DISPLAY (PC set to the first instruction in the ISR)

• Return-from-interrupt instruction in DISPLAY restores PC with address
of instruction i + 1

Issues for handling of interrupts

• Must save return address, processor registers and status registers
since they could be changed by the ISR

• After return-from-interrupt, the saved information must be restored so
that the original program can continue execution without being
affected by the ISR.

• Saving/restoring of general-purpose registers can be automatic or
program-controlled – usually the minimum is saved (PC and status
register) to reduce interrupt latency, the time before the interrupt is
serviced after it is raised.

• ISR is responsible for saving any other registers.

29

Acknowledging the interrupt

• Interrupt-acknowledge signal from processor tells device that
interrupt has been recognized

• In response, device removes interrupt request

• Acknowledgment can be done by accessing status or data register
in device interface

Enabling and Disabling Interrupts

• We may only want to respond to the timer interrupt during the
compute routine, but not at other times.

• Between the time the interrupt is requested and is acknowledged,
we only want the ISR to be called once.

 → we need a way to disable interrupts.

• A bit in the processor status register can globally disable
interrupts (i.e. ignore any interrupt-request signals from I/O
devices).

• A bit in an I/O device’s control register can disable interrupts
from that device.

Event Sequence for an Interrupt

1. Processor status register has IE bit

2. Program sets IE to 1 to enable interrupts

3. When an interrupt is recognized, processor saves program counter
and status register

4. IE bit cleared to 0 so that same or other signal does not cause further
interrupts

5. After acknowledging and servicing interrupt, restore saved state,
which sets IE to 1 again

Handling Multiple Devices

What if more than one device initiates an interrupt?

Q1: How does the processor know which device is requesting an
interrupt?

A1: poll the IRQ bit in each device’s status register

IRQ: interrupt request

Handling Multiple Devices

What if more than one device initiates an interrupt?

Q2: How is the starting address for the correct ISR obtained?

A2: Call device-specific routine for first set IRQ bit that is
encountered. Service the interrupt and then the next interrupt can be
serviced.

Disadvantage: time is spent polling the IRQ bits of devices that are
not requesting any service.

To reduce interrupt latency, use vectored interrupts.

Vectored Interrupts

• A requesting device identifies itself
directly with a device-specific signal
or a binary ID code sent to the
processor

• The interrupt-vector table stores the
address of (or a branch instruction to)
the corresponding ISR.

• The interrupt vector table is located
at fixed address, typically in the
lowest memory addresses (e.g. first
128 bytes of memory may be
reserved for 32 interrupt vectors)

• ISRs can be located anywhere in
memory

Nested interrupts

Q3: Should a device be allowed to interrupt the processor while another
interrupt is being serviced?

A3: Some devices need to be serviced quickly, even if it means
interrupting a currently executing ISR!

• Assign a priority to each I/O device

• Only accept an interrupt from a device with higher priority when
servicing a device with lower priority

• Interrupts from lower-priority devices are ignored

• An ISR should save the PC and SR on the stack and acknowledge the
current interrupt before enabling nesting by enabling interrupts.

Handling Multiple Devices

Q4: How are two simultaneous requests handled?

A4: A way to resolve the conflict (arbitration) is required

• When polling I/O status registers, the service order is determined
by polling order.

• Vectored interrupts require hardware arbitration based on priority
and fairness

• Hardware must select only one device to provide index to the
vector table.

Device registers

ie=interrupt enable

‘1’ if interrupt
raised but not
yet serviced

Exceptions

• An exception is any interruption of execution, not just for I/O

• Recovery from errors: detect division by zero, or instruction
with an invalid OP code

• Debugging: use of trace mode & breakpoints

• Operating system uses software interrupts

Recovery from Errors

• After saving state, service routine is executed

• Routine can attempt to recover (if possible) or inform user, perhaps
ending execution

• With I/O interrupt, instruction being executed at the time of request
is allowed to complete

• If the instruction is the cause of the exception, service routine must
be executed immediately

• Thus, return address may need adjustment

ARM Processor Modes

• The ARM processor has 7
operating modes that
determine what system
resources a program has
access to.

• When an interrupt is
received, the processor
switches into one of two
modes:

• IRQ mode – entered when a
normal interrupt is received

• FIQ mode – entered in
response to a fast interrupt
request

41

Banked registers

• Some modes have an
extra set of shadow
registers that are used
instead of the usual
register when in that
mode.

• E.g. in IRQ mode, access
to “R13” are to “R13_irq”
instead of the real R13

• This avoids having to
save registers – fast

• FIQ maintains a bank of
shadow registers for R8-
R12 as well – no need to
save on stack.

42

SPSR = Saved Program Status Register

ARM return-from-interrupt

Recall that in PC-relative addressing we had to consider that the PC
is incremented by 8 because the processor prefetches the next
instruction.

i (currently executing instruction)
i+1
I+2 ← PC

To return from the interrupt, fetch instruction i+1 by decrementing
the address stored in the LR by 4

SUBS PC, LR, #4

43

Hardware aspects of I/O:
Bus protocols
Textbook 7.1-7.3

44

Interconnection networks

• An interconnection
network is used to
transfer data among
the processor,
memory, and I/O
devices

• A commonly-used
interconnection
network is called a bus

45

A Single-Bus System

• A bus is a set of shared
wires

• Only one pair
source/destination
units can use the bus
to transfer data at any
one time

• Hardware manages
access to the bus to
enforce this constraint

Tri-State Buffers

• When the control signal “output enable” (oe) is
low the buffer is completely disconnected from
the output

• When oe is high, the buffers drives in onto out
• The disconnected state “Z” is “high

impedance”

47
(b) Equivalent circuit

in out

oe

(a) A tri-state buffer

in out

oe=0

oe=1

in out

0
0
1
1

0
1
0
1

Z
Z
0
1

out oe in

Tri-State Buffer C-MOS Implementation

48

in out

oe

VDD= supply Voltage at Drain (5V)

VSS= supply Voltage at Source (0V)

Tri-State Buffers: select between two inputs

49

out in1

in2

s

I/O interface for an input device

Each I/O device is
assigned a unique set
of addresses for the
registers in its
interface

Bus protocols

• A bus protocol is a set of rules that govern when a device may place
information on the bus, when it may load data on the bus into one of its
registers, etc…

• Control signals indicate what and when actions are to be taken.

• control line specifies whether a read or write is to be performed
(read when 1, write when 0).

• Data size parameter (byte, halfword, word) can be indicated by other control lines.

• One of the two devices controls the transfer initiating the read or write
commands (master) and the other is slave. Usually, but not always, the
processor is the master.

• Other control lines convey timing information. Two approaches to timing of bus
transfers:

• Synchronous : all devices derive timing information from a bus clock

• Asynchronous

Input (read) transfer timing on a synchronous bus

t1 – t0 > max. propagation delay of bus + time for slave to decode address and control signals
t2 – t1 > max propagation delay of bus + setup time of master’s register

Input transfer timing on a synchronous bus

• Write is similar: master puts data on data lines at t0. At t2 the
addressed device loads the data into its data register.

• Signals propagate to different devices at different times depending
on their location on the bus.

• Assume that the bus clock is seen at all devices at the same time.

• System designers spend a lot of time making sure this is true.

A detailed timing diagram for the input transfer

A detailed timing diagram for the input transfer

• Not all devices operate at the same speed.

• t2 – t0 must be chosen to accommodate the longest delays on the
bus and the slowest device interface.

• All devices must operate at the speed of the slowest device!

• Master assumes that the data is made available, or has been
received at t2, but what happens if there is a malfunction?

Multiple-cycle data transfers

• To address both of these issues, most bus protocols include a
device response signal.

• A device response signal indicates that the address was successfully decoded
and that it is ready to participate in a data transfer operation.

• Can also be used to adjust the delay of a transfer operation.

• Usually this is accomplished by allowing a data transfer to span multiple cycles.

An input transfer using multiple clock cycles

CC1: Master initiates read, slave decodes
CC2: Slave accesses data
CC3: Data is ready, slave places data on bus and asserts Slave_ready.

Master loads data into register at end of cycle.
CC4: Slave de-asserts Slave_ready and Master may initiate a new transfer

Asynchronous protocol

• Timing automatically adjusts to delays – no bus clock.

• Handshake protocol (exchange of command and response signals
between master and slave) – each signal change results in a
response: full handshake or fully-interlocked.

• Data transfer is controlled by two interlocked signals:
Master-ready and Slave-ready.

• Whenever the processor takes an action, it waits for the device
interface to respond before taking the next action, and vice-versa.

Handshake control: input operation

t1 – t0 > max. bus skew to prevent
Master_ready from arriving at a device before
the address and command and to permit
enough time for device address decoding

t2 – t1 depends on distance between master
and slave and slave circuit delay
t3 – t2 > max. bus skew + setup time
t4 – t3 > max. bus skew

Handshake control: output operation

Synchronous vs. Asynchronous

• Asynchronous adjusts to the timing of each device automatically.

• Synchronous requires careful timing design.

• Asynchronous transfer requires four end-to-end delays (2 round
trips)

• Synchronous transfer only requires one round trip

• Synchronous is used in modern high-speed busses.

61

Arbitration: granting access to a shared resource

Say several devices wish to be bus master, e.g:

• There are multiple processors (cores) on the same bus

• The processor wishes to write to the bus, and an I/O device wishes
to write directly to memory

Direct memory access (DMA)

Bus arbitration

• Devices request bus mastership.
• An arbiter grants the bus to the highest priority device.
• Control lines on the bus are used to request and grant the bus.

Granting the bus
priorities: BR1 > BR2 > BR3

Textbook Example 7.2

An arbiter receives three request signals, R1, R2, R3, and generates
three grant signals G1, G2, G3. R1 has the highest priority and R3 the
lowest.

Draw a state diagram that describes the behavior of this arbiter.

Hardware aspects of I/O:
Parallel and Serial Interfaces
Textbook 7.4, 7.5

67

I/O ports

• An I/O port connects a device to the bus.

• Parallel ports transfer several bits of data simultaneously

• Serial ports transfer one bit at a time.

• Communication with the processor is still parallel – conversion from parallel to
serial happens inside the interface circuit

68

Input port: keyboard to processor

1. Valid changes from 0 to 1 --> KBD_STATUS.KIN = 1 and KBD_DATA loaded
2. Processor read of KBD_DATA --> KBD_STATUS.KIN = 0

Set status
bitEnable

Select
Data or
status

Set status
bit

Capture
data

Detail of status flag control

• KIN is set by Valid and cleared by a read operation, but only when
Master-ready is not asserted.

S Read-
data

KIN

0 0 hold

0 1 0

1 0 1

1 1 0

An output interface

1. Display asserts Ready --> DISP_STATUS.DOUT = 1
2. Processor checks and finds DISP_STATUS.DOUT = 1 --> send char to DISP_DATA
3. This sets DISP_STATUS.DOUT to 0 and New-data to 1
4. Display sets Ready to 0 and accepts and displays the character in DISP_DATA

Write with A2 = 0
loads a byte into
DISP_DATA

Read with A2 = 1
reads
DISP_STATUS

DOUT is b2 of
DISP_STATUS.

Textbook Example 7.3

Design an output interface circuit for a synchronous bus. When data
are written into the data register of this interface the interface sends
a pulse with width of one clock cycle on a line called New-data. The
pulse lets the output device connected to the interface know that
new data are available.

Textbook Example 7.4

Draw a state diagram for a finite-state-machine (FSM) that
represents the behavior of the handshake control circuit

Serial links

• Many I/O interconnections use serial data transmission.

• More suitable for longer distances
• Less expensive

• Data are transmitted one bit at a time.

• Requires a means for the receiver to recover timing information.

• A simple scheme for low-speed transmission is known as “start-
stop,” using a Universal Asynchronous Receiver Transmitter
(UART).

UART Double buffering enables
to start receiving next
character before DATAIN
is read by processor, as
long as processor reads
DATAIN before the serial
transmission of the next
character is completed

Start-stop transmission

• Receiver and transmitted maintain their own unsynchronized
clocks (fR ~ 16 fT)

• Sample at middle of bit: modulo-16 counter reset at leading edge
of start bit. At count of 8, check if the signal is still 0, and then reset
counter. Sample next 8 bits at count of 16.

signals beginning of char ensure proper
transition for start
bit of next char

Synchronous serial transmission

• Asynchronous works by detecting the 1-0 transition at the
beginning of the start bit

• Very high-speed transmission – the waveform is not square and
async is hard to get working

• A synchronous transmitter inserts codes (bit sequences) at the
beginning of the transmission

• The receiver uses the knowledge of the code to generate a receiver
clock that is synchronized to the transmitter clock

82

I/O interconnection standards

• Standards facilitate system integration using components from a
variety of sources and encourage the development of many plug-
compatible devices.

• Perhaps the most commonly encountered I/O standard today is
the Universal Serial Bus (USB).

• Memory keys, printers, external disk drives, cameras, etc.

USB features

• USB 1: 12 Mb/s, USB 2: 480 Mbps, USB 3: 5 Gbps

• Point-to-point connections using serial transmission and two
twisted pairs (+5V, Ground, two data wires)

• Low-speed transmission is single-ended: one data wire for 0, the
other for 1

• High-speed transmission uses Differential signaling

• Data is encoded as the voltage difference between the two data wires

• Noise is cancelled as it common to both wires

USB (Universal Serial Bus)

• Can connect
many devices
using simple
point-to-point
links and hubs

• Plug-and-play:
system detects
new device
automatically

• USB works by
polling devices to
resolve
simultaneous
messages

PCI (Peripheral Component Interconnect) Bus

• Processor-independent
motherboard bus

• Devices on the PCI bus
appear in the address
space of the processor

Reading 4 bytes from device on PCI bus

Plug-and-play

• PCI pioneered the plug-and-play feature, which was made possible by the
bus’s initial connection protocol.

• There are up to 21 device connectors on the PCI bus.

• Each PCI-compatible device has a small ROM with information on the device
characteristics.

• Processor scans all connectors to determine whether a device is plugged in.

• It assigns an address to each device and reads the contents of its ROM.

• With this information, it selects the appropriate device driver software,
performs any initialization that may be needed, etc.

PCIexpress

• Point-to-point
connections with
one or more
switches forming a
tree.

• Root complex
provides high-
speed ports for
memory and other
devices

PCIe links

• The basic connection is called a lane.

• A lane consists of two twisted-pairs or optical lines
for each direction of transmission.

• The data rate is 2.5 Gb/s in each direction.

• A connection to a device (link) may use up to 16 lanes.

• The PCIe protocols are fully compatible with PCI,
e.g., the same initial connection protocol is used.

What’s next

• In the next chapter we will look at memory technology and how to
build an efficient memory organization.

91

	Slide 1
	Input / Output
	Input / Output
	Input / Output
	Software aspects of I/O: Polling
	Accessing I/O Devices
	I/O Device Interface
	Slide 8
	Slide 9
	Slide 10
	Memory-mapped I/O
	I/O synchronization
	Slide 13
	Programmed-controlled I/O
	Polled I/O: reading
	Polled I/O: writing
	Wait Loop for Polling I/O Status
	Wait Loop for Polling I/O Status
	Example
	Slide 20
	Software aspects of I/O: Interrupts
	Example
	Slide 23
	Slide 24
	Interrupts
	Example of Using Interrupts
	Slide 27
	Interrupt-Service Routine
	Issues for handling of interrupts
	Acknowledging the interrupt
	Enabling and Disabling Interrupts
	Event Sequence for an Interrupt
	Handling Multiple Devices
	Handling Multiple Devices
	Vectored Interrupts
	Nested interrupts
	Handling Multiple Devices
	Device registers
	Exceptions
	Recovery from Errors
	ARM Processor Modes
	Banked registers
	ARM return-from-interrupt
	Hardware aspects of I/O: Bus protocols
	Interconnection networks
	A Single-Bus System
	Tri-State Buffers
	Tri-State Buffers_clipboard0
	Slide 49
	I/O interface for an input device
	Bus protocols
	Input (read) transfer timing on a synchronous bus
	Input transfer timing on a synchronous bus
	A detailed timing diagram for the input transfer
	A detailed timing diagram for the input transfer
	Multiple-cycle data transfers
	An input transfer using multiple clock cycles
	Asynchronous protocol
	Handshake control: input operation
	Handshake control: output operation
	Synchronous vs. Asynchronous
	Arbitration: granting access to a shared resource
	Bus arbitration
	Granting the bus priorities: BR1 > BR2 > BR3
	Textbook Example 7.2
	Slide 66
	Hardware aspects of I/O: Parallel and Serial Interfaces
	I/O ports
	Input port: keyboard to processor
	Slide 70
	Slide 71
	Detail of status flag control
	An output interface
	Slide 74
	Textbook Example 7.3
	Slide 76
	Textbook Example 7.4
	Slide 78
	Serial links
	UART
	Start-stop transmission
	Synchronous serial transmission
	I/O interconnection standards
	USB features
	USB (Universal Serial Bus)
	PCI (Peripheral Component Interconnect) Bus
	Reading 4 bytes from device on PCI bus
	Plug-and-play
	PCIexpress
	PCIe links
	What’s next

