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Software aspects of I/O: 
Memory Mapped Registers
Textbook 3.1, D.8.1
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Accessing I/O Devices

• Computer system 
components 
communicate through an 
interconnection network

• From a programmers 
point of view, locations 
implemented as I/O 
registers within same 
address space 



I/O Device Interface

• An I/O device interface is a 
circuit between a device and 
the interconnection network

• Provides the means for data 
transfer and exchange of 
status and control information

• Includes data, status, and 
control registers accessible 
with load and store 
instructions

• Memory-mapped I/O enables 
software to view these 
registers as locations in 
memory
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• These I/O device registers are
memory-mapped



Memory-mapped I/O
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Locations associated with I/O devices are accessed with Load and Store 
instructions

LDR R2, =0x4000 // R2 points to the data reg

LDR R1, [R2] // read from the data reg

STR R1, [R2] // write to the data reg



I/O synchronization

● E.g. Read keyboard characters, store in memory, and display on screen

● A keyboard’s data input rate (keyboard to processor) is likely to be only a 
few characters per second – limited by user’s typing speed. 

● The rate of character output (processor to display) is likely to be much 
faster - say thousands of characters per second.

● The processor can execute billions of instructions per second – much 
faster than the display can accept data!

• Need a way to synchronize the timing of an I/O device with the processor.

• How do you know at what time an input device has data ready for the 
processor to read?

• How do you know at what time the output device is ready to receive data 
written by the processor?



Software aspects of I/O: 
Polling
Textbook 3.1, D.8.1
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Programmed-controlled I/O

• Assume that the I/O devices have a way to send a ready signal to the 
processor

• For keyboard, indicates character can be read so processor uses a load to access 
data register

• For display, indicates character can be sent so processor uses a store to access 
data register

• The ready signal in each case is a status flag in status register that is 
polled by the processor.



Polled I/O: reading

• Assume a device with 8-bit I/O registers.

• For example, keyboard has KIN status flag in bit b1 of KBD_STATUS 
register at address 0x4004

• Processor polls KBD_STATUS register, checking whether KIN flag is 0 or 1

• If KIN is 1, processor reads KBD_DATA register



Polled I/O: writing

• For example, display has DOUT status flag in bit b2 of DISP_STATUS register 
at address 0x4014

• Processor polls DISP_STATUS register, checking whether DOUT flag is 0 or 1

• If DOUT is 1, processor writes DISP_DATA register

• You have to poll a device’s status register for each time you read or write it’s 
data register



Wait Loop for Polling I/O Status

• Program-controlled I/O implemented with a wait loop for polling keyboard 
status register:

• Keyboard circuit places character in KBD_DATA and sets KIN flag in 
KBD_STATUS

• Circuit clears KIN flag when KBD_DATA is read

• Assume that the address for KBD_DATA (0x4000) has been loaded into R1.

READWAIT: LDRB R3, [R1, #4] // read byte from KBD_STATUS
TST R3, #2 // check the value of KIN
BEQ   READWAIT // branch when KIN=0
LDRB R3, [R1] // read from KBD_DATA



Wait Loop for Polling I/O Status

• Display circuit sets DOUT flag in DISP_STATUS after previous character has 
been displayed

• Circuit automatically clears DOUT flag when DISP_DATA register is written

• Assume that the address for DISP_DATA has been loaded into R2.

WRITEWAIT: LDRB R4, [R2, #4] // read byte from DISP_STATUS
TST R3, #4 // check the value of DOUT
BEQ   WRITEWAIT // branch when DOUT=0
STRB R3, [R2] // write to DISP_DATA



Example

• Consider complete program that use polling to read, store, and 
display a line of characters (“echo” to the display).

• Program finishes when carriage return (CR) character is entered on 
keyboard

• Assume R0 points to the first byte of the memory area where the 
line is to be stored.



  LDR   R1, =0x4000   // KBD
     LDR   R2, =0x4004   // DISP

READ: LDRB  R3, [R1, #4]  // load KBD_STATUS byte and
 TST   R3, #2        // wait for character

BEQ   READ

LDRB  R3, [R1]      // read the character and
STRB  R3, [R0], #1  // store it in memory

ECHO: LDRB  R4, [R2, #4]  // load DISP_STATUS byte and
TST   R4, #4        // wait for display
BEQ   ECHO          // to be ready

STRB  R3, [R2]      // send character to display
    TEQ   R3, #CR       // if not carriage return

BNE   READ          // read more characters
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Software aspects of I/O: 
Interrupts
Textbook 3.2, D.7, D.8.2
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Example

Waiting for a pizza when you are studying for exams

22
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Interrupts

• Polling with a wait loop has a big drawback: processor is kept busy.

• With long delay before I/O device is ready, cannot perform other 
useful computation

• Instead of using a wait loop, an alternative is to let the
I/O device alert the processor when it is ready

• Hardware sends an interrupt-request signal to the processor at the 
appropriate time

• Meanwhile, processor performs useful tasks



Example of Using Interrupts

• Consider a task with extensive computation and periodic display 
of current results (every 10s)

• A timer circuit can be used for the desired 10s interval - it can 
send the processor a signal every 10s

• Polling would spend each 10s interval waiting for the signal, with 
no time doing computation. 

• The timer can raise an interrupt-request signal to processor every 
10s



• Processor completes instruction i, and then suspends COMPUTE execution 
to execute DISPLAY, then returns to execute instruction i+ 1

• DISPLAY is short; time is mostly spent in COMPUTE



Interrupt-Service Routine

• DISPLAY is an interrupt-service routine (ISR). 

• Unlike a subroutine, it can can be executed at any time, not in 
response to a call.

• For example, assume interrupt signal asserted when processor is 
executing instruction i

• Instruction completes, then PC saved to temporary location before 
executing DISPLAY (PC set to the first instruction in the ISR)

• Return-from-interrupt instruction in DISPLAY restores PC with address 
of instruction i + 1



Issues for handling of interrupts

• Must save return address, processor registers and status registers 
since they could be changed by the ISR

• After return-from-interrupt, the saved information must be restored so 
that the original program can continue execution without being 
affected by the ISR.

• Saving/restoring of general-purpose registers can be automatic or 
program-controlled – usually the minimum is saved (PC and status 
register) to reduce interrupt latency, the time before the interrupt is 
serviced after it is raised.

• ISR is responsible for saving any other registers.
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Acknowledging the interrupt

• Interrupt-acknowledge signal from processor tells device that 
interrupt has been recognized

• In response, device removes interrupt request

• Acknowledgment can be done by accessing status or data register 
in device interface



Enabling and Disabling Interrupts

• We may only want to respond to the timer interrupt during the 
compute routine, but not at other times.

• Between the time the interrupt is requested and is acknowledged, 
we only want the ISR to be called once.

  → we need a way to disable interrupts.

• A bit in the processor status register can globally disable 
interrupts (i.e. ignore any interrupt-request signals from I/O 
devices).

• A bit in an I/O device’s control register can disable interrupts 
from that device.



Event Sequence for an Interrupt

1. Processor status register has IE bit

2. Program sets IE to 1 to enable interrupts

3. When an interrupt is recognized, processor saves program counter 
and status register

4. IE bit cleared to 0 so that same or other signal does not cause further 
interrupts

5. After acknowledging and servicing interrupt, restore saved state, 
which sets IE to 1 again



Handling Multiple Devices

What if more than one device initiates an interrupt?

Q1: How does the processor know which device is requesting an 
interrupt?

A1: poll the IRQ bit in each device’s status register

IRQ: interrupt request



Handling Multiple Devices

What if more than one device initiates an interrupt?

Q2: How is the starting address for the correct ISR obtained?

A2: Call device-specific routine for first set IRQ bit that is 
encountered. Service the interrupt and then the next interrupt can be 
serviced.

Disadvantage: time is spent polling the IRQ bits of devices that are 
not requesting any service.

To reduce interrupt latency, use vectored interrupts.



Vectored Interrupts

• A requesting device identifies itself 
directly with a device-specific signal 
or a binary ID code sent to the 
processor

• The interrupt-vector table stores the 
address of (or a branch instruction to) 
the corresponding ISR.

• The interrupt vector table is located 
at fixed address, typically in the 
lowest memory addresses (e.g. first 
128 bytes of memory may be 
reserved for 32 interrupt vectors)

• ISRs can be located anywhere in 
memory



Nested interrupts

Q3: Should a device be allowed to interrupt the processor while another 
interrupt is being serviced?

A3: Some devices need to be serviced quickly, even if it means 
interrupting a currently executing ISR!

• Assign a priority to each I/O device

• Only accept an interrupt from a device with higher priority when 
servicing a device with lower priority

• Interrupts from lower-priority devices are ignored

• An ISR should save the PC and SR on the stack and acknowledge the 
current interrupt before enabling nesting by enabling interrupts.

 



Handling Multiple Devices

Q4: How are two simultaneous requests handled? 

A4: A way to resolve the conflict (arbitration) is required

• When polling I/O status registers, the service order is determined 
by polling order.

• Vectored interrupts require hardware arbitration based on priority 
and fairness

• Hardware must select only one device to provide index to the 
vector table.



Device registers

ie=interrupt enable

‘1’ if interrupt 
raised but not 
yet serviced



Exceptions

• An exception is any interruption of execution, not just for I/O

• Recovery from errors: detect division by zero, or instruction 
with an invalid OP code

• Debugging: use of trace mode & breakpoints

• Operating system uses software interrupts



Recovery from Errors

• After saving state, service routine is executed

• Routine can attempt to recover (if possible) or inform user, perhaps 
ending execution

• With I/O interrupt, instruction being executed at the time of request 
is allowed to complete

• If the instruction is the cause of the exception, service routine must 
be executed immediately

• Thus, return address may need adjustment



ARM Processor Modes

• The ARM processor has 7 
operating modes that 
determine what system 
resources a program has 
access to. 

• When an interrupt is 
received, the processor 
switches into one of two 
modes:

• IRQ mode – entered when a 
normal interrupt is received

• FIQ mode – entered in 
response to a fast interrupt 
request 
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Banked registers

• Some modes have an 
extra set of shadow 
registers that are used 
instead of the usual 
register when in that 
mode.

• E.g. in IRQ mode, access 
to “R13” are to “R13_irq” 
instead of the real R13

• This avoids having to 
save registers – fast

• FIQ maintains a bank of 
shadow registers for R8-
R12 as well – no need to 
save on stack.

42

SPSR = Saved Program Status Register



ARM return-from-interrupt

Recall that in PC-relative addressing we had to consider that the PC 
is incremented by 8 because the processor prefetches the next 
instruction.

i (currently executing instruction)
i+1
I+2    ←  PC

To return from the interrupt, fetch instruction i+1 by decrementing 
the address stored in the LR by 4

SUBS PC, LR, #4
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Hardware aspects of I/O:
Bus protocols
Textbook 7.1-7.3

44



Interconnection networks

• An interconnection 
network is used to 
transfer data among 
the processor, 
memory, and I/O 
devices

• A commonly-used 
interconnection 
network is called a bus
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A Single-Bus System

• A bus is a set of shared 
wires

• Only one pair 
source/destination 
units can use the bus 
to transfer data at any 
one time

• Hardware manages 
access to the bus to 
enforce this constraint



Tri-State Buffers

• When the control signal “output enable” (oe) is 
low the buffer is completely disconnected from 
the output

• When oe is high, the buffers drives in onto out 
• The disconnected state “Z” is “high 

impedance”
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Tri-State Buffer C-MOS Implementation
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in out 

oe 

VDD= supply Voltage at Drain (5V)

VSS= supply Voltage at Source (0V)



Tri-State Buffers: select between two inputs
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I/O interface for an input device

Each I/O device is 
assigned a unique set 
of addresses for the 
registers in its 
interface



Bus protocols

• A bus protocol is a set of rules that govern when a device may place 
information on the bus, when it may load data on the bus into one of its 
registers, etc…

• Control signals indicate what and when actions are to be taken.

•               control line specifies whether a read or write is to be performed
(read when 1, write when 0).

• Data size parameter (byte, halfword, word) can be indicated by other control lines.

• One of the two devices controls the transfer initiating the read or write 
commands (master) and the other is slave. Usually, but not always, the 
processor is the master.

• Other control lines convey timing information. Two approaches to timing of bus 
transfers:

• Synchronous : all devices derive timing information from a bus clock

• Asynchronous



Input (read) transfer timing on a synchronous bus

t1 – t0 > max. propagation delay of bus + time for slave to decode address and control signals
t2 – t1 > max propagation delay of bus + setup time of master’s register



Input transfer timing on a synchronous bus

• Write is similar: master puts data on data lines at t0. At t2 the 
addressed device loads the data into its data register.

• Signals propagate to different devices at different times depending 
on their location on the bus.

• Assume that the bus clock is seen at all devices at the same time. 

• System designers spend a lot of time making sure this is true.



A detailed timing diagram for the input transfer



A detailed timing diagram for the input transfer

• Not all devices operate at the same speed.

• t2 – t0 must be chosen to accommodate the longest delays on the 
bus and the slowest device interface.

• All devices must operate at the speed of the slowest device!

• Master assumes that the data is made available, or has been 
received at t2, but what happens if there is a malfunction?



Multiple-cycle data transfers

• To address both of these issues, most bus protocols include a 
device response signal.

• A device response signal indicates that the address was successfully decoded 
and that it is ready to participate in a data transfer operation.

• Can also be used to adjust the delay of a transfer operation.

• Usually this is accomplished by allowing a data transfer to span multiple cycles.



An input transfer using multiple clock cycles

CC1: Master initiates read, slave decodes
CC2: Slave accesses data
CC3: Data is ready, slave places data on bus and asserts Slave_ready. 

Master loads data into register at end of cycle.
CC4: Slave de-asserts Slave_ready and Master may initiate a new transfer 



Asynchronous protocol

• Timing automatically adjusts to delays – no bus clock.

• Handshake protocol (exchange of command and response signals 
between master and slave) – each signal change results in a 
response: full handshake or fully-interlocked.

• Data transfer is controlled by two interlocked signals: 
Master-ready and Slave-ready.

• Whenever the processor takes an action, it waits for the device 
interface to respond before taking the next action, and vice-versa.



Handshake control: input operation

t1 – t0 > max. bus skew to prevent 
Master_ready from arriving at a device before 
the address and command and to permit 
enough time for device address decoding

t2 – t1 depends on distance between master 
and slave and slave circuit delay
t3 – t2 > max. bus skew + setup time
t4 – t3 > max. bus skew



Handshake control: output operation



Synchronous vs. Asynchronous

• Asynchronous adjusts to the timing of each device automatically.

• Synchronous requires careful timing design.

• Asynchronous transfer requires four end-to-end delays (2 round 
trips)

• Synchronous transfer only requires one round trip

• Synchronous is used in modern high-speed busses.

61



Arbitration: granting access to a shared resource

Say several devices wish to be bus master, e.g:

• There are multiple processors (cores) on the same bus

• The processor wishes to write to the bus, and an I/O device wishes 
to write directly to memory 

Direct memory access (DMA)



Bus arbitration

• Devices request bus mastership.
• An arbiter grants the bus to the highest priority device.
• Control lines on the bus are used to request and grant the bus.



Granting the bus
priorities: BR1 > BR2 > BR3



Textbook Example 7.2

An arbiter receives three request signals, R1, R2, R3, and generates 
three grant signals G1, G2, G3. R1 has the highest priority and R3 the 
lowest.

Draw a state diagram that describes the behavior of this arbiter.





Hardware aspects of I/O: 
Parallel and Serial Interfaces
Textbook 7.4, 7.5
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I/O ports

• An I/O port connects a device to the bus.

• Parallel ports transfer several bits of data simultaneously

• Serial ports transfer one bit at a time.

• Communication with the processor is still parallel – conversion from parallel to 
serial happens inside the interface circuit
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Input port: keyboard to processor

1. Valid changes from 0 to 1 --> KBD_STATUS.KIN = 1 and KBD_DATA loaded
2. Processor read of KBD_DATA --> KBD_STATUS.KIN = 0



Set status 
bitEnable



Select
Data or 
status

Set status 
bit

Capture
data



Detail of status flag control

• KIN is set by Valid and cleared by a read operation, but only when 
Master-ready is not asserted.

S Read-
data

KIN

0 0 hold

0 1 0

1 0 1

1 1 0



An output interface

1. Display asserts Ready --> DISP_STATUS.DOUT = 1
2. Processor checks and finds DISP_STATUS.DOUT = 1 --> send char to DISP_DATA  
3. This sets DISP_STATUS.DOUT to 0 and New-data to 1
4. Display sets Ready to 0 and accepts and displays the character in DISP_DATA



Write with A2 = 0 
loads a byte into 
DISP_DATA

Read with A2 = 1 
reads 
DISP_STATUS

DOUT is b2 of 
DISP_STATUS. 



Textbook Example 7.3

Design an output interface circuit for a synchronous bus. When data 
are written into the data register of this interface the interface sends 
a pulse with width of one clock cycle on a line called New-data. The 
pulse lets the output device connected to the interface know that 
new data are available.





Textbook Example 7.4

Draw a state diagram for a finite-state-machine (FSM) that 
represents the behavior of the handshake control circuit





Serial links

• Many I/O interconnections use serial data transmission.

• More suitable for longer distances
• Less expensive

• Data are transmitted one bit at a time.

• Requires a means for the receiver to recover timing information.

• A simple scheme for low-speed transmission is known as “start-
stop,” using a Universal Asynchronous Receiver Transmitter 
(UART).



UART Double buffering enables 
to start receiving next 
character before DATAIN 
is read by processor, as 
long as processor reads 
DATAIN before the serial 
transmission of the next 
character is completed



Start-stop transmission

• Receiver and transmitted maintain their own unsynchronized 
clocks (fR ~ 16 fT)

• Sample at middle of bit: modulo-16 counter reset at leading edge 
of start bit. At count of 8, check if the signal is still 0, and then reset 
counter. Sample next 8 bits at count of 16.

signals beginning of char ensure proper 
transition for start 
bit of next char



Synchronous serial transmission

• Asynchronous works by detecting the 1-0 transition at the 
beginning of the start bit

• Very high-speed transmission – the waveform is not square and 
async is hard to get working

• A synchronous transmitter inserts codes (bit sequences) at the 
beginning of the transmission

• The receiver uses the knowledge of the code to generate a receiver 
clock that is synchronized to the transmitter clock
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I/O interconnection standards

• Standards facilitate system integration using components from a 
variety of sources and encourage the development of many plug-
compatible devices.

• Perhaps the most commonly encountered I/O standard today is 
the Universal Serial Bus (USB).

• Memory keys, printers, external disk drives, cameras, etc.



USB features

• USB 1: 12 Mb/s, USB 2: 480 Mbps, USB 3: 5 Gbps

• Point-to-point connections using serial transmission and two 
twisted pairs (+5V, Ground, two data wires)

• Low-speed transmission is single-ended: one data wire for 0, the 
other for 1

• High-speed transmission uses Differential signaling 

• Data is encoded as the voltage difference between the two data wires

• Noise is cancelled as it common to both wires 



USB (Universal Serial Bus )

• Can connect 
many devices 
using simple 
point-to-point 
links and hubs

• Plug-and-play: 
system detects 
new device 
automatically

• USB works by 
polling devices to 
resolve 
simultaneous 
messages



PCI (Peripheral Component Interconnect) Bus

• Processor-independent 
motherboard bus

• Devices on the PCI bus 
appear in the address 
space of the processor



Reading 4 bytes from device on PCI bus



Plug-and-play

• PCI pioneered the plug-and-play feature, which was made possible by the 
bus’s initial connection protocol.

• There are up to 21 device connectors on the PCI bus.

• Each PCI-compatible device has a small ROM with information on the device 
characteristics.

• Processor scans all connectors to determine whether a device is plugged in.

• It assigns an address to each device and reads the contents of its ROM.

• With this information, it selects the appropriate device driver software, 
performs any initialization that may be needed, etc.



PCIexpress

• Point-to-point 
connections with 
one or more 
switches forming a 
tree.

• Root complex 
provides high-
speed ports for 
memory and other 
devices



PCIe links

• The basic connection is called a lane.

• A lane consists of two twisted-pairs or optical lines
for each direction of transmission.

• The data rate is 2.5 Gb/s in each direction.

• A connection to a device (link) may use up to 16 lanes.

• The PCIe protocols are fully compatible with PCI,
e.g., the same initial connection protocol is used.



What’s next

• In the next chapter we will look at memory technology and how to 
build an efficient memory organization.
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