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Disclaimer

Lectures are recorded live and posted unedited on MyCourses on the
same day.

It is possible (and even likely) that I will (sometimes) make mistakes
and give incorrect information during the live lectures. If you have
any doubts, please check the textbook, or ask on the online forum
for clarification.
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Introduction



The Processor

The processor reads
program instructions from
the computer’s memory
and executes them.
• Each instruction is first
fetched from memory

• Then, the instruction is
decoded (interpreted);
its operands are read

• Finally, the instruction
is executed, and any
results are stored

3



Processor Building Blocks

• PC holds the address of the
next instruction to be fetched,
decoded, executed

• This instruction is saved in
the instruction register IR:
IR← Mem[PC]

• The instruction address
generator updates PC:
PC← PC + 4∗

• Control circuitry decodes the
instruction and generates the
signals that direct the
datapath (everything else)

∗ a mux selects between PC + 4 and PC + disp (generated by a
branch instruction and associated hardware)
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Datapath Design
Textbook§5.1-5.4



Data Processing Hardware

The contents of register A are processed, and the result is saved in
register B.

The clock period is determined by the delay through the
combinational logic.
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Data Processing Hardware

Combinational logic can be divided into simpler sub-circuits that are
cascaded into multiple stages.

• n stages: n clock cycles to complete the operation
• Clock period can be shorter: 1/n
• Pipelining increases throughput n×! (more on this later)
• Effective latency becomes 1 clock cycle!
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Instruction Execution

In RISC machines, all∗ instructions are executed in the same number
of steps.

• Each step is carried out in a separate hardware stage
• We will look at a five-stage design typical of lower-cost RISC
processors

• Very low-cost processors may use three stages
• High-performance processors use 10 or more stages (up to 31!)

∗ except for the exceptions, e.g., LDM, STM, division, etc
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Load Instruction

LDR R5, [R7, R8] // R5 <-- Mem[R7 + R8]

1. Fetch the instruction and increment the program counter
IR← Mem[PC]; PC← PC + 4

2. Decode the instruction and read registers R7 and R8 from the
register file (RF)

3. Compute the effective address: Z← R7 + R8
4. Read the memory source operand: Y← Mem[Z]
5. Write into the destination register: R5← Y
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ALU Instruction

ADD R3, R4, R5 // R3 <-- R4 + R5

1. Fetch the instruction and increment the program counter
IR← Mem[PC]; PC← PC + 4

2. Decode the instruction and read registers R4 and R5 from the
register file (RF)

3. Compute the sum: Z← R4 + R5
4. Take no action except: Y← Z
5. Write into the destination register: R3← Y

The CPU does nothing in the memory access stage, but this step
must occur regardless so that all instructions take the same number
of steps.
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ALU Instruction with Immediate Operand

ADD R3, R4, #1000 // R3 <-- R4 + 1000

The immediate operand is put in the instruction by the assembly,
and can be found in the IR.

1. Fetch the instruction and increment the program counter
IR← Mem[PC]; PC← PC + 4

2. Decode the instruction and read register R4 from the register file
3. Compute the sum: Z← R4 + 1000
4. Take no action except: Y← Z
5. Write into the destination register: R3← Y
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Store Instruction with Immediate Operand

STR R6, [R8, #1000] // Mem[R8+1000] <-- R6

1. Fetch the instruction and increment the program counter
IR← Mem[PC]; PC← PC + 4

2. Decode the instruction and read register R6 and R8 from the
register file (RF)

3. Compute the effective address: Z← R8 + 1000;
Hold onto our data: M← R6

4. Write the contents of R6 to the memory location R8 + 1000:
Mem[Z]← M

5. Take no action

The CPU does nothing in the register-write stage, but this step must
occur regardless.
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Summary of Instruction Execution Stages

Typical RISC CPUs break instruction execution into the following
steps:

1. Fetch an instruction into the IR; increment PC
2. Decode the instruction; read register operands from the RF
3. Execute an ALU operation
4. Access data Memory if the instruction is a load or store
5. Write back the result to the destination register in the RF

Often each step is performed by a different hardware stage; such a
processor uses five stages.

• Stages 1, 2, and 3 will be used for all instructions
• Stages 4 and 5 only perform useful work for a subset of
instructions
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5-stage RISC Processor

Instruction processing moves from stage to stage with each clock
cycle.

• Stage 1, Fetch: the instruction is read
from memory

• Stage 2, Decode: the instruction is
decoded, and source registers are
read

• Stage 3, Execute: ALU operations are
performed
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5-stage RISC Processor

Instruction processing moves from stage to stage with each clock
cycle.

• Stage 4, Memory: memory is read or
written, if applicable

• Stage 5, Write back: the result of the
instruction is written to the
destination register, if applicable
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Register File

The register file needs to be able to perform two simultaneous reads.
How can we read more than one thing out of a memory at a time?

• A dual-ported SRAM is one way
• Inside, two sets of word lines make it
possible to select more than one
row at a time (using two decoders)

• Two sets of bit lines make it possible
to produce two results at the same
time, too

• This requires more transistors (e.g.,
8), and extra wiring: higher area
(cost), and higher power
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Register File

• Using two single-ported
SRAMs is an alternative

• Each SRAM has the same data
for each register

• One operand is read out of
each in parallel

• Each SRAM is updated on
each write to the RF

• Is this a good trade-off?
Depends! SRAM design is
hard.
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Reading the Register File

How do we decode an instruction and read the RF at the same time?

In RISC ISAs, the register fields are always in the same bit positions.

Cond Opcode Rn Rd Operand2

31 27 19 15 11 0

ADD R1, R3, R2 // R1 <-- R3 + R2

1110 00001000 0011 0001 0010

31 27 19 15 11 3 0

ADD R4, R5, #24 // R4 <-- R5 + #24

1110 00101000 0101 0100 000000011000

31 27 19 15 11 0
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Arithmetic and Logic Unit

• Both source operands and
the destination location are
in the register file

• Conceptually, the system
functions as if the output of
the ALU is connected to the
input of the RF

• One operand (RA) always
comes from the RF

• The second operand may
come from the RF (RB) or the
IR (immediate value)

There is always an address B, and RB output of the RF, but control
signals determine what inputs the ALU uses.
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Waiting for Memory

We have assumed so far that all memory accesses take one clock
cycle. Is this realistic?

• If we’re using a cache, yes, on average
• On a cache miss, the processor waits

• Miss in L1, but hit in L2? A short wait.
• Have to access main memory? A long wait.

• The memory interface generates a signal called memory
function completed (MFC)

• The processor extends the duration of the memory step (in clock
cycles) until MFC is asserted
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The Datapath: Stages 2-5

• Inter-stage registers RA, RA, RZ,
RM, and RY are used to carry data
from one stage to the next

• Register file: used in stages 2 and
5; first, to read operands

• ALU: used in stage 3
• Memory: used in stage 4
• Write-back: the final stage is
used to write the result to the
register file
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Register File: Stages 2 and 5

• Address inputs are connected
to the corresponding bit
fields in the IR

• Source registers are read (in
the first half of) stage 2, and
saved in RA and RB

• In (the second half of) stage
5, the result is stored in the
destination register selected
by Address C (IR bits)
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ALU Stage

• The ALU performs (at least
part of) the operation
specified by the instruction

• Multiplexer MuxB selects
either RB or the immediate
field of IR

• The result is stored in RZ
• Data to be written to memory
is transferred from RB to RM
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Memory Stage

• Load and store instructions
use RZ to address memory

• RM is used to send data to
memory on a store

• MuxY selects memory data on
a load

• The result from
the previous stage (0), or
data from memory (1), or
return address (2),
go in RY
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Memory Address Generation

• MuxMA selects PC when fetching
instructions

• The instruction address generator
increments PC after fetching an
instruction, adjusts PC in response
to branches, and returns values for
LR on subroutine calls

• MuxMA selects RZ when
reading/writing data operands
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Instruction Address Generator

• Connections to RY and RA
support subroutine calls and
returns respectively

• On subroutine call, LR← PC
• On return, PC← LR

• Immediate value from IR is
(sign) extended prior to
addition
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Processor Control

• When an instruction is read, it
is saved in IR

• Control circuitry (an FSM)
decodes the instruction,
generating appropriate mux
control signals, etc

• The Immediate block extends
the immediate field of the
instruction to 32 bits based
on the instruction type:
arithmetic, sign-extended;
logic, zero-padded
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Example: ADD

ADD R3, R4, R5 // R3 <-- R4 + R5

1. Memory address← PC,
Read memory,
IR← Memory data,
PC← PC + 4

2. Decode instruction
RA← R4
RB← R5

3. RZ← RA + RB
4. RY← RZ
5. R3← RY

Example:  Add  R3, R4, R5
1. Memory address ¬ [PC],       Read 

memory,                    IR ¬ Memory data,               
PC ¬ [PC] + 4

2. Decode instruction,  
RA ¬ [R4],                                                 RB 
¬ [R5]

3. RZ ¬ [RA] + [RB]

4. RY ¬ [RZ]

5. R3 ¬ [RY]

All of these actions 
happen in parallel
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Example: LDR

LDR R5, [R7, #24] // R5 <-- Mem[R7 + 24]

1. Memory address← PC,
Read memory,
IR← Memory data,
PC← PC + 4

2. Decode instruction,
RA← R7

3. RZ← RA + 24
4. Memory address← RZ,
Read memory,
RY← Memory data

5. R5← RY
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Example: STR

STR R6, [R8, #24] // Mem[R8 + 24] <-- R6

1. Memory address← PC,
Read memory,
IR← Memory data,
PC← PC + 4

2. Decode instruction,
RA← R8,
RB← R6

3. RZ← RA + 24
RM← RB

4. Memory address← RZ,
Memory data← RM,
Write memory

5. No action taken

Example:  STR R6, [R8, #X]
1. Memory address ¬ [PC],         Read 

memory,                    IR ¬ Memory data,              
PC ¬ [PC] + 4

2. Decode instruction, 
RA ¬[R8],                      RB ¬[R6]

3. RZ ¬[RA] + Immediate value X,  RM 
¬[RB]

4. Memory address ¬[RZ],      Memory data 
¬[RM],          Write memory

5. No action
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Example: B

B label // PC <-- PC + displacement

1. Memory address← PC,
Read memory,
IR← Memory data,
PC← PC + 4

2. Decode instruction
3. PC← PC + displacement
4. No action taken
5. No action taken
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Example: BEQ

Assume a RISC processor that does not employ conditional
execution. Conditional branches make comparisons.
BEQ R5, R6, label // If R5 == R6, PC <-- PC + displacement

1. Memory address← PC,
Read memory,
IR← Memory data,
PC← PC + 4

2. Decode instruction,
RA← R5,
RB← R6

3. RZ← RA - RB,
If ALUiszero == 1 then PC← PC + displacement

4. No action taken
5. No action taken

ALU signals when result is zero, positive, and negative, and when
overflow, and carry out occur. 31



Note that the ARM ISA decouples the condition from the branch:

• An instruction update the CPSR (ALU signals flow into CPSR)
• A conditional instruction executes only if condition is true (by
checking CPSR)
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Control Design
Textbook§5.5-5.7



Example RISC Instruction Format

The instruction register holds the current instruction; different
groups of bits (fields) in this register are used to determine what the
instruction, is and therefore what control signals to activate.

Consider the following instruction encoding schemes:
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Control Signals

Control signals are (a) directly derived from IR fields, or (b)
determined based on the OP code.

1. IR fields select registers from the RF
2. Mux inputs are chosen to direct flow
of register outputs

3. ALU_op determines the function of
the ALU; ALU also generates signals

4. An FSM coordinates when PC, IR, RF,
and memory are written

5. Interstage registers are always
enabled; their contents only matter
when the stage they drive is active
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Memory and IR Control Signals

• IR is written only after MFC is asserted
• This design can sign-extend 16 bits, zero pad 16 bits, or prepare
a 26-bit immediate for use in subroutine calls
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Instruction Address Generator Control Signals

Control signals determine the source used to update PC, and when.
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Control Signal Generation

The control unit generates the control signals so the actions in the
datapath take place in the correct sequence and at the correct time.

• Two basic approaches:
• Hardwired control (typical of RISC, e.g., ARM)
• Microprogramming (typical of CISC, e.g., Intel)

• Hardwired control involves implementing an FSM
• The FSM keeps count of the current stage: one cycle each,
except for memory, which may take longer

• FSM inputs: IR, ALU output signals, external inputs (e.g.,
interrupts)

• FSM outputs: control signals
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Hardwired Control Signal Generation

Example: stage 1 (fetch)

when T1 == 1:

MA_select← 1
MEM_read← 1
IR_enable← MFC

INC_select← 0
PC_select← 1
PC_enable← MFC
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Example: Counter_enable

What is the logic expression for Counter_enable?

• Control must wait until MFC to be asserted before incrementing
the step counter in a step in which MEM_read or MEM_write
command is asserted

• Counter_enable should be asserted in any step in which WFMC
(wait for memory to complete) is not asserted: e.g.,T1 + T4

• Otherwise, it should be asserted when MFC is asserted

Counter_enable← WFMC + MFC
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Example: PC_enable

What is the logic expression for the PC_enable?

• Control must make sure PC is incremented only once when a
execution step is extended for more than one clock cycle

• Writing to PC should only be enabled when (a) MFC is asserted,
or (b) in stage 3 of branch instructions

PC_enable← T1 · MFC + T3 · BR
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Pipelining
Textbook§6.1-6.7



Example

Consider doing laundry. If each operation requires one hour, the
latency per load is three hours.

Wash Dry Fold

Wash Dry Fold

Two loads? Six hours total.

This is inefficient when there’s a lot of laundry: when the dryer is
working, the washer is idle!
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Example

What happens if we make use of washer and dryer simultaneously
on different loads?

Wash Dry Fold

Wash Dry Fold

Wash Dry Fold

Wash Dry Fold

Six hours, with pipelining? Four loads, instead of two.
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What is pipelining?

Pipelining is applying the “assembly line” concept to the execution of
instructions

• Instruction execution is divided into distinct steps (like we’ve
already done)

• Multiple instructions are executed simultaneously by
overlapping the steps of different instructions:

• Only one instruction is started at a time
• Each hardware stage is working on a different instruction
• This keeps all stages busy, dramatically improving performance
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Ideal Pipelining

In the ideal case, a new instruction is started each clock cycle, and
each instruction only takes a single cycle in each step.

What are some reasons why this ideal may not be always achievable?
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Pipeline Organization

• Use PC to fetch a new instruction every∗ cycle
• Instruction-specific information moves with instructions through
the different stages

• Interstage buffers (pipeline registers) hold this information,
incorporating RA, RB, RM, RY, RZ, IR, and PC-Temp registers

• The buffers also hold control signals: e.g., mux inputs are
determined during decode, but applied when appropriate

∗ Except when something prevents an instruction from advancing!
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Pipeline Organization
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What can stall the pipeline?

Instructions advance, one stage per cycle, unless something occurs
to stall an instruction. Circumstances in which one instruction
causes a delay in another instruction are called hazards, and they
come in three flavors.

• Structural hazards: caused by contention for a shared resource
(e.g., memory)

• Data hazards: occur when one instruction must wait for the
result of another

• Control hazards: caused by branch instructions delaying
instruction fetch

Instructions may also be delayed when our assumption that each
stage takes a single cycle is violated (e.g., when a memory access
results in a cache miss).
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Data Dependencies

Consider the following assembly.

ADD R2, R3, R7 // R2 <-- R3 + R7
SUB R9, R2, R8 // R9 <-- R2 - R8

R2 is the (a) destination of the add instruction, and (b) source for the
subtract instruction.

• There is a data dependency between ADD and SUB: SUB cannot
be executed until we have the result of the ADD.

• With no pipelining, there’s no problem: the result is in R2
because ADD completes before SUB begins.

• With pipelining, SUB starts before ADD finishes.
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Data Hazards

ADD R2, R3, R7 // R2 <-- R3 + R7
SUB R9, R2, R8 // R9 <-- R2 - R8

Suppose ADD is instruction Ij and SUB is instruction Ij+1:

• Ij+1 reads its operands in cycle 3
• But the result of Ij is written in cycle 5 (to be read in cycle 6)
• Ij and Ij+1 cannot execute simultaneously because of the data
dependency

• This is a data hazard

To resolve this, we delay SUB until its operands are available.
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Stalling the Pipeline

ADD R2, R3, R7

SUB R9, R2, R8

We must delay the SUB instruction until it can read the result of the
ADD from R2.

• R2 is written in cycle 5
• R2 can be read in cycle 6
• The CPU discovers the dependency during decode in cycle 3
• SUB stalls in decode for three cycles (3, 4, 5) before reading R2
in cycle 6
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Stalling the Pipeline

ADD R2, R3, R7

SUB R9, R2, R8

Control circuitry detects the dependencies during decode.

• Interstage buffers carry register identifiers for source(s) and
destination of instructions

• In cycle 3, control compares the destination register in Compute
(R2) against source(s) in Decode (R2 and R8)

• In this case, R2 matches; SUB is kept in Decode while ADD is
allowed to continue
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Stalling the Pipeline

What happens when ADD leaves Compute and enters Memory?

• B1 is not clocked, holding SUB in decode
• Meanwhile, control signals in Compute are
set to create an implicit NOP (no-operation)

• These NOPs (also called bubbles) propagate
through the pipeline

• Then, Control compares sources in Decode
and destinations in later stages

• The dependency remains (ADD in Memory);
SUB is stalled again (B1 not clocked)

• This repeats until the dependency clears

ADD R2, R3, R7

SUB R9, R2, R8 52



Can we avoid stalling?

We can avoid some hazards by adding extra hardware to the
pipeline, and more complex logic to the control circuitry.

• Operand forwarding handles some data dependencies without
stalling the pipeline

• In our example, ADD’s result is in RZ (within B3) in cycle 4
• We can add inputs to our ALU operand muxes and forward the
result from stage 4 to stage 3

ADD R2, R3, R7

SUB R9, R2, R8
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Forwarding: Memory to Compute
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Forwarding: Write-back to Compute

If an instruction separates two with a dependency, we still must stall
if we cannot forward. Solution: add more forwarding paths!

ADD R2, R3, R7 // R2 <-- R3 + R7
ORR R4, R5, R6 // R4 <-- R5 || R6
SUB R9, R2, R8 // R9 <-- R2 - R8

Mux inputs must also be added to accept forwarding from Write-back.
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Handling Dependencies in Software

Data dependencies are evident during assembly, and can therefore
be handled in software (if, e.g., we do not intend to detect or mitigate
them in hardware).

• The assembler inserts
three explicit NOP
instructions

• SUB does not enter
decode until the result
of ADD is availble

• The assembler can
optimize, replacing
NOP with independent
instructions

ADD R2, R3, R7

SUB R9, R2, R8
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Memory Delays

Cache misses can delay instructions in either the Fetch or Memory
stages, e.g.,
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Memory Delays

Even when a load hits in cache, there may be delay due to a data
dependency.

• A one-cycle stall is required before the result can be forwarded
from the Write-back stage

• Optimize by inserting a useful instruction between the two
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Control Hazards

Remember that ideal pipelining expects that we can fetch a new
instruction each cycle, while the previous instruction is decoded.

• Branch instructions must (a) compute the target address, and
(b) potentially compare registers

• This comparison determines whether to go to the target
address, or execute the fall-through instruction

• A hazard occurs because these operations occur in later stages
(e.g., Compute)
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Unconditional Branches

• Target address (offset + (PC + 4)) is computed in cycle 3
• Meanwhile, fetch in cycles 2 (PC + 4) and 3 ((PC + 4) + 4)
Mystery solved! PC is 8 ahead!

• These instructions are discarded, resulting in a 2 cycle penalty
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Reducing the Branch Penalty

We can reduce the branch penalty by computing the target earlier.

• Add an adder to the decode stage
• This shortens the branch penalty by one cycle

We are adding HW (i.e., cost and energy) to improve performance.
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Conditional Branches

BEQ R5, R6, label // If R5 == R6, PC <-- PC + displacement

• Conditional branches must compute the target address and
compare registers

• We can compute the target in Decode with an extra adder
• We can also make a comparison in Decode with an extra
comparator

We are adding hardware again to improve performance.
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What’s Next?

This set of lectures introduced the basics of processor
implementation. We’ve looked at:

• Data path elements and design
• Control circuitry design
• Pipelining and pipeline hazards

Next we’ll look at computer hardware for arithmetic.
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