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Disclaimer

Lectures are recorded live and posted unedited on MyCourses on the
same day.

It is possible (and even likely) that I will (sometimes) make mistakes
and give incorrect information during the live lectures. If you have
any doubts, please check the textbook, or ask on the online forum
for clarification.
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Introduction



Input and Output: User Interfaces
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Input and Output: Device Interfaces
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Input and Output: Sensing and Actuating

5



Software Aspects of I/O



Software Aspects of I/O

Memory-mapped Registers
Textbook§3.1, D.8.1



Accessing I/O Devices

From a programmers point of view, I/O is implemented as memory
within same address space as code and data.

• HW view: computer
system components
communicate through
an interconnection
network

• SW view: to the CPU,
the outside world is all
memory

How does this work in practice?
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I/O Device Interface

An I/O device interface is a circuit between a device and the
interconnection network.

• Provides the means for
data transfer and
exchange of status and
control information

• Includes data, status,
and control registers
accessible with load
and store instructions

Memory-mapped I/O enables software to view these registers as
locations in memory.
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Memory-mapped I/O

I/O device registers are memory-mapped if they they are accessible
with a load/store instruction.

ContentAddress

...

KBD_DATA0x4000

KBD_STATUS0x4004

KBD_CONT0x4008

...

DISP_DATA0x4010

DISP_STATUS0x4014

DISP_CONT0x4018

...
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Memory-mapped I/O

Locations associated with I/O devices are accessed with load and
store instructions; addresses are saved in the text region.

kbd: .word 0x00004000 // keyboard base address
...
LDR R0, kbd // read the base address
LDR R1, [R0, #0] // read data register
...
STR R2, [R0, #8] // write control register

Note: bit manipulation is
required to set or check
individual bits.
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I/O Synchronization

We need to synchronize the timing of I/O devices and the processor.

• When does an input device have data ready for the processor to
read?

• When is an output device ready to receive data written by the
processor?

E.g., read keyboard characters, store them in memory, and display
them on screen.

• A keyboard’s data input rate (keyboard to processor) is likely to
be at most a few characters per second.

• The rate of character output (processor to display) is likely to be
much faster, e.g., thousands of characters per second.

• The processor can execute many millions of instructions per
second, much faster than the display can accept data!

How do we coordinate actions across such disparate time scales?
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Software Aspects of I/O

Polling
Textbook§3.1, D.8.1



Program-controlled I/O

Assume that I/O devices have a way to send a ready signal to the
processor.

• For the keyboard, this indicates that a character can be read; the
processor responds with a load from the keyboard’s data
register.

• For the display, this indicates that a character can be sent; the
processor responds with a store to the display’s data register.

The ready signal is a status flag in the status register that is polled,
or repeatedly checked, by the processor. This is referred to as polling.
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Polling I/O: Reading

Before reading data, we need to check that data is ready.

• KDB_STATUS is accessible at 0x4004, and has a 1-bit flag KIN in
bit 1

• The processor reads KDB_STATUS, and checks if KIN is 1 or 0
• If KIN is 1, the processor reads KBD_DATA at 0x4000

How would you implement this in assembly?
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Polling I/O: Writing

Writing follows a similar process to reading.

• DISP_STATUS is accessible at 0x4014, and has a 1-bit flag DOUT
in bit 2

• The processor reads DISP_STATUS, and checks if DOUT is 1 or 0
• IF DOUT is 1, the processor writes DISP_DATA at 0x4010

What happens if you don’t check a device’s status register before
reading or writing?
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Waiting for your bit to come in

Program-controlled I/O is implemented by polling in a loop, referred
to as busy-waiting or spin-waiting. E.g.,

• Assume the keyboard circuit places a character in KBD_DATA
and sets KIN in KBD_STATUS

• The circuit clears the KIN flag when KBD_DATA is read∗

kbd: .word 0x00004000 // keyboard base address
...
LDR R0, kbd // read the base address

READWAIT:
LDRB R1, [R0, #4] // read KBD_STATUS
TST R1, #2 // do R1 & 0b00000010, set CPSR
BEQ READWAIT // spin while Z=1
LDRB R3, [R0] // done spinning, read data

∗ How does it know?
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Waiting for your bit to come in

Once again, waiting to write is similar to waiting to read. E.g.,

• Assume the display circuit sets DOUT in DISP_STATUS after the
previous character has been displayed

• The circuit clears DOUT when DISP_DATA is written

disp: .word 0x00004010 // display base address
...
LDR R0, disp // read the base address

WRITEWAIT:
LDRB R1, [R0, #4] // read DISP_STATUS
TST R1, #4 // do R1 & 0b00000100, set CPSR
BEQ WRITEWAIT // spin while Z=1
STRB R3, [R0] // done spinning, write data
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Example: Echo

Let’s look at a program that uses polling to read, store, and display a
line of characters (“echo” to the display). The program finishes when
the carriage return (CR) character is entered on the keyboard.
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Example: Echo

kbd: .word 0x00004000 // keyboard base address
disp: .word 0x00004010 // display base address
buf: .space 80 // a buffer of 80 characters
equ CR, 13

...
LDR R0, kbd // keyboard base address
LDR R1, disp // display base address
LDR R2, =buf // save characters in buf

READ:
LDRB V1, [R0, #4] // read KBD_STATUS
TST V1, #2 // do R1 & 0b00000010, set CPSR
BEQ READ // spin while Z=1
LDRB V2, [R0] // done spinning, read character
STRB V2, [R2], #1 // save the character

ECHO:
LDRB V1, [R1, #4] // read DISP_STATUS
TST V1, #4 // do R1 & 0b00000100, set CPSR
BEQ ECHO // spin while Z=1
STRB V2, [R1] // done spinning, write character
TEQ V2, #CR // if not CR ...
BNE READ // ... read more characters 17



Software Aspects of I/O

Interrupts
Textbook§3.2, D.7, D.8.2



Polling is terribly inefficient

What do you do if you are waiting for a pizza to arrive while studying?
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Polling?
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No, you wait for the delivery to interrupt you
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Interrupts

Polling has several major drawbacks. One is that the processor is
kept busy while it waits.

• The CPU executes continuously until the flag is changed
• The CPU cannot be used for other tasks in the meantime
• This wastes time, it wastes energy, ...

Using interrupts, I/O hardware asserts an interrupt request signal
(IRQ) when it is ready.

• The CPU only interacts with the device when it is useful to do so
• Otherwise, the CPU works on other tasks
⇒ improving performance

• Or, the CPU can go to sleep
⇒ improving energy efficiency
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Interrupts are essential when timing is important

Consider a task that records and compresses video and audio.

• Video, audio are sampled at different rates (e.g., 60 Hz, 44.1 kHz)
• Compression complexity is different for each, too
• Coordinating multiple polling tasks requires significant
programmer effort: we cannot miss any samples

• Time spent computing must be measured and managed
• How often the CPU waits for each data source must be balanced
• Everything is harder when computational complexity is data
dependent (as is the case in compression)
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Interrupts are essential when timing is important

Managing multi-rate data and tasks with different and variable
complexity is much simpler with interrupts.

• Set a timer for each task: e.g., 167 ms for one, 23 us for the other
• When a timer goes off, an interrupt service routine (ISR) is
executed in response

• When the ISR finishes, the processor returns to whatever it was
computing before

Using interrupts improve performance, energy efficiency, robustness,
and portability.
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Interrupt Service Routines (ISRs)

Each interrupt has associated with it an ISR. Interrupts may occur at
any time: unlike subroutines, ISRs may be executed at any time.

If an interrupt occurs when the processor is executing instruction i:

• This instruction finishes
• The processor saves its state and executes the ISR
• When the ISR returns, state is restored, and PC is set to
instruction i+ 1
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Enabling and Disabling Interrupts

There may be times when we do not want to respond to interrupts.

• E.g., in different modes, or different use cases: there’s no need
to compress audio if audio is muted!

• When handling an interrupt
• When working with shared resources or data

We need a way to disable interrupts.

• A bit in the processor status register can globally disable
interrupts (i.e., ignore IRQ signals)

• A bit in an I/O device’s control register can disable interrupts
from that device

• ARM provides support for disabling groups of interrupts
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Device Registers

The interrupt behavior of devices is controlled through their
registers.

• KIE and DIE enable
interrupts from these devices

• KIRQ and DIRQ indicate an
interrupt has been requested;
these bits must be cleared by
the ISR
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Basic Interrupt Servicing Event Sequence

Assuming that interrupts are enabled (IE bit is set in the processor
status register CPSR):

• A devices raises an interrupt request (IRQ)
• The processor completes the instruction it was executing
• The processor saves its state∗, e.g., PC and CPSR registers (on the
stack)

• Interrupts are temporarily disabled by reseting (clearing) IE
• PC is set to the first instruction of the ISR
• ISR executes, performing requested processing and
acknowledging the IRQ (device deasserts its IRQ)

• PC and CPSR are restored (and thus IE is set again)

If an ISR is going to use any general-purpose registers, what must it
do before it does so?
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Handling Multiple Devices

Things are more complicated if there are multiple devices that might
request interrupt servicing.

Question 1: How does the processor know which device is requesting
an interrupt?

Answer 1: One simplistic strategy is to poll the IRQ bit in each
device’s status register.

This makes sense if we have a single IRQ pin, and are targeting very,
very low-cost hardware.
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Handling Multiple Devices

Things are more complicated if there are multiple devices that might
request interrupt servicing.

Question 2: How is the starting address for the correct ISR
determined?

Answer 2: When polling devices to find a set IRQ bit, call the
device-specific routine whenever a set IRQ bit is encountered.
Service this interrupt (which resets the IRQ bit), and return to polling.

But the whole point of interrupts is to avoid polling, right? Also, this
approach isn’t particularly portable.

A much more efficient solution is vectored interrupts.

29
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A Quick Aside: Interrupts? Or Exceptions?

You’ve encountered exceptions before: null pointer exceptions, index
out of bounds exceptions, segmentation faults, etc.

Exceptions are a special case of interrupt as they are caused by
events in the processor itself (rather than an external device).

In the context of vectored interrupts, interrupts (from external
devices) and exceptions (occurring within the processor) are handled
in the same way ...
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Vectored Interrupts

With vectored interrupts, each possible interrupt (exception) is
assigned a number, and that number is used to index into a special
table in memory, the interrupt vector table, which stores all ISR
starting addresses.

• When an interrupt occurs, the
processor gets the identifying
number for the interrupt.

• The vector table is located at
a fixed location in memory (in
ARMv7, starting at 0x0000
0004 by default).

• E.g., if interrupt number n has
occurred, 0x0000 0004 +
n*4 has the PC value for the
desired ISR.

Approved versions of
the Signature
There are two approved ver-
sions of the signature. These
should preferably appear in red,
but could alternatively 
appear in black, grey, or 
white, if necessary. 

Version 1 
Version 1 in red is the pre-
ferred version and should 
be used whenever possible.
This version appears on the
University’s official letterhead
and business cards.

Version 2
Version 2 is to be used only for
publications destined for distant
places where it is believed that
the word “University” is neces-
sary for recognition. 

Other symbols of the
University

Over time, a number of symbols,
logos, or marks have been used
to identify McGill University.
The coat of arms, shield, and
signature illustrated above are
the only versions sanctioned for
current use.  Consult the
Secretary-General for permis-
sion to use any other graphic
identity.  Final approval rests
with the Board of Governors.

Using the Signature,
Coat of Arms, or Shield
in publications
It is important that the full
University signature (the shield
plus the wordmark) appear on
the front cover of brochures, fly-
ers, folders, newsletters, and
other printed materials produced
by the University for dissemina-
tion outside the University.  
In instances where a document
is for internal use only, or is
clearly associated with McGill,
the coat of arms or shield alone
may provide sufficient identifi-
cation.

6

Vector Table

• A (1) in the LSB of 
the ISR address 
indicates that 
handler uses 
Thumb code

Exception 
number

IRQ number Vector Offset

Initial SP 0x00
1 Reset 0x04
2 -14 NMI 0x08
3 -13 HardFault 0x0C
4

Reserved

0x10
5
6
7
8
9

10
11 -5 SVCall 0x2C
12 Reserved13
14 -2 PendSV 0x38
15 -1 SysTick 0x3C
16 0 IRQ0 0x40
17 1 IRQ1 0x44
18 2 IRQ2 0x48
. .

16+n n IRQn 0x40+4n

ECSE 444, F-20, Lecture 11© 2020 Brett H. Meyer 23
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Vectored Interrupts

• The vector table simplifies ISR
lookup: no polling is needed.

• The vector table also
improves portability: different
ISRs for different devices are
easily combined; ISRs can be
stored anywhere in memory.

Approved versions of
the Signature
There are two approved ver-
sions of the signature. These
should preferably appear in red,
but could alternatively 
appear in black, grey, or 
white, if necessary. 

Version 1 
Version 1 in red is the pre-
ferred version and should 
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Version 2
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University
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In instances where a document
is for internal use only, or is
clearly associated with McGill,
the coat of arms or shield alone
may provide sufficient identifi-
cation.

6

4. Load PC with ISR Address

The program counter 
is selected from the 
vector table 
depending on the 
exception

Memory Address Value
0x0000_0000 Initial Stack Pointer
0x0000_0004 Reset
0x0000_0008 NMI_IRQHandler
…

IRQ0_Handler
IRQ1_Handler

…

Reset:

…

NMI_IRQHandler:
…

IRQ0_Handler:

…

IRQ1_Handler:

ECSE 444, F-20, Lecture 11© 2020 Brett H. Meyer 22
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Handling Multiple Devices

Things are more complicated if there are multiple devices that might
request interrupt servicing.

Question 3: Should a device be allowed to interrupt the processor
while another interrupt is being serviced?

Answer 3: Some devices need to be serviced quickly, even if it means
interrupting a currently executing ISR!

• Assign a priority to each interrupt
• The processor will switch to a higher priority interrupt (saving PC
and CPSR on the stack, first) if it occurs when servicing a lower
priority interrupt

• Lower priority interrupts are temporarily ignored
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Handling Multiple Devices

Things are more complicated if there are multiple devices that might
request interrupt servicing.

Question 4: What if there are two simultaneous requests with the
same priority?

Answer 4: Arbitration.

• Polling? Polling order determines service order.
• Vectored interrupts? Arbitration hardware facilitates the
selection of an interrupt to service.

What about real devices? ARM processors are heavily optimized for
interrupt processing, especially cases where multiple interrupt
requests are outstanding.
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Exception Handling

Exceptions generally indicate an event has occurred which requires
special attention.

• Errors of various sorts: divide by zero, invalid instruction, etc
• Some other condition in software (e.g., the throw-catch pattern
in Java)

• Debugging: e.g., upon reaching a breakpoint
• OS: exceptions are used to change between threads and
processes
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Exception Handling

Exceptions are handled with ISRs, too.

• Errors are most often reported to the user (e.g., segmentation
fault); execution then ends

• If an instruction causes an exception (e.g., divide by zero), that
instruction is not allowed to complete like when interrupts occur

• Such exceptions require that the return address (PC) be modified
accordingly (possibly re-executing the offending instruction)
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ARM Processor Modes

• The ARM processor has seven
operating modes that
determine what system
resources a program has
access to.

• When an interrupt occurs, the
processor switches into one
of two modes:

• IRQ mode: entered when a
normal interrupt is received

• FIQ mode: entered in
response to a fast interrupt
request∗

37



Banked Registers

• Some modes use shadow
registers instead of the usual
registers

• E.g., IRQ mode: accesses to
R13 are to R13_irq instead

• This avoids saving/restoring
some registers, reducing the
time to enter an ISR

• E.g., FIQ mode: no need to
save R8–R12, reducing the
time spent in an ISR
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Returning from Interrupts in ARM

Recall that in PC-relative addressing, PC doesn’t point to the
executing instruction:

i (currently executing instruction)
i+1 (instruction in decode)
i+2 ← PC (instruction being fetched)

To return from an ISR, fetch instruction i+1 by decrementing LR*:

SUBS PC, LR, #4

*CPSR is restored automagically when PC is destination and S flag set
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Hardware Aspects of I/O

Bus Protocols
Textbook§7.1, 7.2



Interconnection Networks

• An interconnection network is
used to transfer data among
the processor, memory, and
I/O devices

• A commonly-used
interconnection network is
called a bus

40



Single-bus System

• A bus is a set of shared wires
• Only one source may drive
the bus at any one time

• Hardware manages access to
the bus to enforce this
constraint
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Tri-state Buffers

Buses are driven (pulled to Vdd or GND) by tri-state buffers. Tri-state
buffers operate as follows:

• When the control signal output enable oe is low, the buffer is
disconnected from the output

• When oe is high, the buffer drives in onto out
• The disconnected state Z is high impedance

Tri-State Buffers

• When the control signal “output enable” (oe) is 
low the buffer is completely disconnected from 
the output

• When oe is high, the buffers drives in onto out 

• The disconnected state “Z” is “high 
impedance”
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Tri-state Buffers in CMOS
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Tri-State Buffer C-MOS Implementation
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in out 

oe 

V
DD

= supply Voltage at Drain (5V)

V
SS

= supply Voltage at Source (0V)
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Tri-state buffers can also select among multiple inputsTri-State Buffers: select between two inputs

49

out in
1
 

in
2
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Bus interface for an input device

Buses consist of address, data, and control wires. These wires are
connected to different circuitry in the I/O interface for a device, and
provide access to registers.
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Bus Protocols

A bus protocol is a set of rules that govern exchanges of information
between devices on a bus.

• Bus masters initiate communication on the bus; bus slaves
respond accordingly

• The processor is often, but not always, the master in an exchange

• Control signals indicate what and when actions are to be taken
• Address signals indicate which bus-connected resources are
requested to participate in an exchange

• Data signals are used to for the exchange itself
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Bus Control Signals

Control signals set the parameters for an exchange of information on
the bus.

• The R/W control signal specifies whether a read (1) or write (0) is
being performed

• Data exchange size (byte, halfword, word, etc) is indicated with
other signals

• Yet others specify timing information, depending on the type of
bus

• Synchronous bus: a clock signal synchronizes all devices
• Asynchronous bus: devices synchronize using changes in special
control signals
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Synchronous Read Access Timing

1. Master sets address and control signals at t0 (rising clock)
2. Slave responds on data signals at t1 (falling clock)
3. Master reads data signals at t2 (rising clock)

48



Synchronous Write Access Timing

Write functions similarly:

1. Master sets address, control and data signals at t0 (rising clock)
2. At t2, the device captures the data in a register (rising clock)

Note that signals propagate to different devices at different times,
depending on their location on the bus.

• We generally assume that changes in the bus clock are seen at
all devices at the same time

• System designers spend a lot of time and energy making sure
this is true
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Detailed Synchronous Read Access Timing
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Bus Timing Caveats

A few important notes about bus timing:

• Not all devices operate at the same speed
• t2 − t0, the bus cycle, must be long enough to accommodate the
longest possible delay on the bus and slowest device interface

• All devices operate at the speed of the slowest device

Bus masters assume that data is valid at t2; what happens if there
has been a malfunction?
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Multi-cycle Data Transfers

To address both of these issues, most bus protocols include a device
ready, or acknowledgment, signal.

• An acknowledgment signal indicates that the address was
successfully decoded, and that the device is ready to participate
in the requested data transfer

• This signal can also be used to adjust the delay of the transfer
operation

• E.g., a transfer can be allowed to span multiple bus cycles
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Multi-cycle Read Access Timing

CC1: Master initiates read access, slave decodes address and control signals
CC2: Slave accesses its data
CC3: Data is ready, driven onto bus, and ready is asserted
CC4: Slave deasserts ready, and master may initiate a new transfer
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Asynchronous Bus Protocol

Asynchronous buses do not use a clock signal to synchronize devices.

• Timing automatically adjusts to delays
• A handshake protocol is used to coordinate between devices
• If each signal change results in a response, this is called full
handshake or fully interlocked handshaking

• Data transfer is controlled by ready signals for the master and
slave devices

• Whenever a master makes a request, it waits for a response
before taking the next action
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Asynchronous Read Access Timing
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Asynchronous Write Access Timing
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Synchronous vs. Asynchronous Buses

Synchronous buses Asynchronous buses
Require careful design to en-
sure timing constraints are met

Flexibly adjust to the timing
of each device automatically;
this is especially useful for long
buses

Transfers only require two end-
to-end delays (one round trip)

Transfers require four end-to-
end delays (two round trips)

Used in high-speed intercon-
nect between devices that are
close together (mm to m)

Used in cars, airplanes, and fac-
tories (where busesmay extend
up to 1 km)
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Hardware Aspects of I/O

Arbitration
Textbook§7.3



Arbitration: granting access to a shared resource

Typical bus-based systems have multiple components that may act
as master. E.g.,

• There are multiple processors on the same bus, or
• There are multiple components capable of writing to memory
(e.g., a processor and a DMA, or direct memory access module)

Only one component is allowed to initiate a bus request at a time;
bus-based systems need policies for determining which components
have permission to do so at what times.
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Bus Arbitration

Each different type of bus will specify a different protocol for
arbitration.

There are two basic types of arbitration:

• bus-based arbitration, and
• cooperative arbitration

In bus-based arbitration, special circuitry determines which master
device can next initiate a request.

In cooperative arbitration, master devices achieve consensus on
which device can next initiate a request.
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Bus Arbitration Using Arbitration Hardware

In bus-based arbitration:

• Devices request permission to use the bus
• An arbiter circuit grants a access to device based on an
arbitration policy

• The bus that is granted access carries out its request

Device priority is one common approach to determining which device
should be granted access.
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Priority-based Arbitration

In this example, the priorities are BR1 > BR2 > BR3.
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Textbook Example 7.2

An arbiter receives three request signals, R1, R2, and R3, and
generates three grant signals, G1, G2, G3. R1 has the highest priority;
R3 has the lowest.

Draw a state diagram that describes the behavior of this arbiter.
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Solution
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Hardware Aspects of I/O

Parallel and Serial Interfaces
Textbook§7.4, 7.5



I/O Ports

Recall: an I/O port (interface) connects a device to a bus.

• Parallel ports transfer several bits simultaneously
• Serial ports transfer bits one∗ at a time

∗ Communication with the processor is still parallel: conversion from
parallel to serial happens inside the interface circuit.
∗ Some “serial” interfaces use multiple data lines, but still transfer
data in multiple bus cycles.
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Input Interface: Keyboard to Processor

• A debouncing circuit ensures key presses are signaled just once
• When Valid rises, 8-bit Data is sampled by KBD_DATA and
KBD_STATUS.KIN← 1.

• Valid later falls (only to rise again).
• When the processor reads KBD_DATA (asynchronously),
KBD_STATUS.KIN← 0.
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Input Interface: Keyboard to Processor

• A1 and A0 are not
used: accesses are
word-aligned.

• When R, My-address,
Master-ready are
asserted, the keyboard
drives the bus.

• When A2 is 0, KIN is
cleared (because
KBD_DATA is read).
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Input Interface: Keyboard to Processor

• A2 selects between KBD_DATA and KBD_STATUS.
• Valid triggers KBD_DATA capture, and sets KBD_STATUS.KIN.
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Status Flag Control Circuit

S Read- KIN
data

0 0 hold
0 1 0
1 0 1
1 1 X

KIN is set by Valid and cleared by a read operation, but only when
Master-ready is not asserted.
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Output Interface: Processor to Display

• When the display asserts Ready, DISP_STATUS.DOUT← 1.
• When the processor observes this, a character is sent to
DISP_DATA.

• Then DISP_STATUS.DOUT← 0, and New-data← 1.
• Finally, Ready← 0, and the character is displayed.
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Output Interface: Processor to Display

• When A2 and R are 0,
bus data is sampled by
DISP_DATA.

• When A2 and R are 1,
bus is driven with
DISP_STATUS.

• DOUT is b2 of
DISP_STATUS.
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Textbook Example 7.3

Design an output interface circuit for a synchronous bus. When data
are written into the data register of this interface the interface sends
a pulse with width of one clock cycle on a line called New-data. The
pulse lets the output device connected to the interface know that
new data are available.
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Solution
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Textbook Example 7.4

Draw a state diagram for a
finite-state-machine (FSM)
that represents the
behavior of the handshake
control circuit.
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Solution

• Start in A.
• Move to B on
Write-data.

• Stay in B until Ready.
• Stay in C until
Write-data and Ready.
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Serial Buses

Many modern I/O interconnection standards use serial data
transmission. Serial buses has a number of advantages of parallel
buses.

• Fewer connectors: more reliable.
• Fewer wires: better signal integrity, faster, lighter, cheaper.
• Smaller interface: lower complexity, power.

Data is transmitted one bit at a time.

• This requires a means for the receiver to recover timing
information.

• One simple scheme for low-speed transmission is called
start-stop, and is implemented in the Universal Asynchronous
Receiver Transmitter (UART) protocol.
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UART

Double buffering
allows the interface
to continue to
receive new data
while the processor
handles the
previous frame.
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Start-Stop Transmission

In asynchronous serial communication, receiver and transmitter
maintain their own clocks.

With UART, fR ∼ 16fT .

• On start bit’s falling edge, reset modulo-16 counter.
• At a count of 8, check if the input is still 0; reset the counter.
• Sample each of the next eight bits at a count of 16.
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I/O Interconnection Standards

Standards facilitate system integration by setting the constraints for
interconnection. This decouples processor from I/O device
development, making it possible for devices to work with a variety of
processors, and vice versa.

In this context, everyone designs for conformance to the standard;
compliant devices are then assumed to work interchangeably.
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Universal Serial Bus (USB)

Perhaps the most commonly encountered I/O standard today is the
Universal Serial Bus (USB): it is used for keyboards, mice,
headphones, microphones, flash storage devices, printers, external
disk drives, cameras, etc.

• USB 1: 12 Mbps; USB 2: 480 Mbps; USB 3: 5 Gbps
• Point-to-point connections using serial transmission and two
twisted pairs (+5V, ground, two data wires)

• Low-speed transmission is single-ended: one data wire for 0,
the other for 1

• High-speed transmission uses differential signaling
• Data is encoded as the difference in voltage between the two lines
• Noise is canceled, as it is common to both wires
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Universal Serial Bus (USB)

• USB can connect many
devices using simple
P2P links and hubs

• Plug-and-play: system
detects new devices
automatically

• USB hubs poll devices
to initiate exchanges
(avoiding issues with
simultaneous
communication)

80



Peripheral Component Interconnect (PCI) Bus

• PCI is a processor-
independent
motherboard bus.

• Devices on the PCI bus
appear in the address
space of the processor.
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PCI Plug-and-Play

PCI pioneered plug-and-play, which was made possible by its initial
connection protocol.

• There are up to 21 device connectors on the PCI bus
• Each PCI device has a small ROM that stores the device’s
characteristics

• The processor scans all connectors to determine where devices
are connected

• It then assigns addresses to each device and reads the contents
of each ROM

• With this information, the system selects the appropriate device
driver, performs initialization, etc
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PCI Read Timing
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PCI Express (PCIe)

• P2P connections with
one or more switches
forming a tree.

• Root complex provides
high-speed ports for
memory and other
devices.
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PCIe Links

• The basic connection is called a lane
• A lane consists of two twisted-pair or optical lines for each
direction of transmission

• The data rate is 2.5 Gbps in each direction
• A link may use up to 16 lanes
• The PCIe protocols are fully compatible with PCI, e.g., using the
same initial connection protocol
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Conclusions

This set of lectures has introduce how computer systems receive
input and send output. We’ve looked at:

• Software aspects of I/O: polling and interrupts
• Hardware aspects of I/O: buses, arbitration, synchronous and
asynchronous communication protocols

• Standard interconnection networks

Next time: memory technology and efficient memory organization!
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