
ECSE324 : Computer Organization
Instruction Set Architecture
Chapter 2, Appendix D

Christophe Dubach
Fall 2022

Revision history:
Warren Gross – 2017
Christophe Dubach – W2020, F2020, F2021, F2022
Brett H. Meyer – W2021, W2022
Some material from Hamacher, Vranesic, Zaky, and Manjikian, Computer Organization and Embedded Systems, 6 th ed, 2012, McGraw Hill
and Patterson and Hennessy, Computer Organization and Design, ARM Edition, Morgan Kaufmann, 2017, and notes by A. Moshovos

Timestamp: 2022/09/09 09:41:00

1

Disclaimer

It is possible (and even likely) that I will (sometimes) make mistakes
and give incorrect information during the live lectures. If you have
any doubts, please check the textbook, or ask for clarification online.

2

Introduction

Instruction Set Architecture

Each processor has a predefined set of instructions that it
implements called the instruction set.

Instruction Set Architecture (ISA)
The ISA, or programming model, consists of the instruction set,
information about how memory is organized, how to access
memory, etc.

3

Instruction Set Architecture

• The ISA forms a contract between the machine and the
programmer, defining features that

• software may use, and
• hardware will implement

• In general, multiple processors implement any given ISA
• E.g., consider: x86-64, ARMv7-A, Power ISA 3.0, RISC-V

Note: the ISA need not define how hardware will implement any
given feature.

4

Different Implementations of an ISA

Machine language software (assembly) is portable between two
processors if they implement the same ISA.

• The ISA is the interface between the hardware and software
• The ISA tells you what the processor does; the ISA is a public
specification

• The implementation is how it does it; the implementation is
private (trade secrets, etc)

ISAs may be used for a long time because of legacy software.

• x86 was introduced in 1978
• x86-64 extended x86 to support 64-bit operations in 2001
• Consequently, x86 software written for the 8086 in 1978 runs on
Core i7 (x86-64) in 2021

5

The ARM Architecture

• A family of RISC processors used in
many devices, especially
smartphones and tablets

• There have been 150 billion ARM
processors shipped as of 2019
(∼15 billion per year in 2015/2016)

• ARM provides the processor design
to chip manufacturers, who fabricate
it in their own products:

• e.g., Apple A5 chip has a dual-core
ARM Cortex-A9 processor

• e.g., Nvidia Tegra 2 SoC also has the
same ARM processor

Nvidia Tegra 2 SoC
source: www.anadtech.com

6

https://www.anandtech.com/show/4144/lg-optimus-2x-nvidia-tegra-2-review-the-first-dual-core-smartphone/3

ARM ISA

ARM has developed several ISAs, and many different
implementations based on each ISA.

• ARMv7-A is the ISA for the ARM
Cortex-A9 processors in Apple A5
(iPhone 5) and the Altera Cyclone V
SoC (the one from the labs!)

DE1-SoC Altera Cyclone V

There are other implementations of the ARMv7-A ISA that have
different characteristics: speed, power, cost, fault-tolerance, etc, ...

7

In the lab you will program an ARM Cortex-A9 processor
implementing the ARMv7-A ISA.

• The “Introduction to the ARM Processor Using Altera Toolchain”
document contains most of what you need for this course.

• Appendix D of the textbook describes ARMv4, which is very
similar, and should be adequate for this course. Some of the
terminology is slightly different and I will use the correct terms
in the lecture slides.

• The complete ISA is described in the ARMv7-AR Architecture
Reference Manual.

• The interesting parts for us are : A1–A4.

From now on, I will just refer to “ARM ISA” or “ARM assembly
language.”

8

ftp://ftp.intel.com/Pub/fpgaup/pub/Intel_Material/14.0/Tutorials/ARM_A9_intro_alt.pdf
https://developer.arm.com/documentation/ddi0406/cd
https://developer.arm.com/documentation/ddi0406/cd

ARM ISA

ARM ISA

Overview
Textbook§D.1, D.2

ARM ISA Basics

The word length is 32 bits; processor registers are 32 bits; the address
size is 32 bits.

The ISA is (mostly) RISC:

• All∗ instructions are 32-bits long.
• Only load and store instructions access memory.
• All arithmetic and logic instructions operate on registers.
• There are some features which normally are seen in CISC ISAs.

∗ The ARM ISA also supports 16-bit wide Thumb-2 instructions.

9

ARM ISA Memory

• Memory is byte-addressable using 32-bit addresses
• Memory is litte-endian
• Word, half-word, and byte data transfers to and from processor
registers are supported (SW’s perspective)

• All memory accesses are word-aligned (HW’s implementation)

10

ARM Programmer-visible Registers

ARM implements sixteen 32-bit processor registers labeled R0
through R15.

• R15 is the program counter (PC)
• R14 is the link register (LR)
• R13 is the stack pointer (SP)

In general, we use only∗ R0...R12 as General Purpose Registers (GPRs)
and only use and refer to R13, R14, and R15 as SP, LR, and PC.
∗ In practice, additional guidelines further limit the use of registers
by programmers and compilers. Curious? See the ARM Architecture
Procedure Call Standard.

There is also a special status register called the Current Program
Status Register (CPSR) that indicates various useful information
(more later).

11

https://developer.arm.com/documentation/ihi0042/latest/
https://developer.arm.com/documentation/ihi0042/latest/

ARM ISA

Syntax
Textbook§2.5, D.4

Assembly Language Syntax

Assembly language consists of shorthand instruction names called
mnemonics, a syntax for using them, and other directives for
organizing them.

A program called an assembler translates the mnemonics into
machine language instructions (binary; more later).

Here is a (short) ARM assembly program:

ADD R1, R2, R3 // R1 <-- R2 + R3

• ADD is a mnemonic
• R1 is a destination register; the first operand
• R2 and R3 are source registers; the second and third operand
• // R1 <-- R2 + R3 is a comment (not a very useful one)

12

There are different ways to use each instruction.

ADD R1, R2, R3 // R1 <-- R2 + R3

Here, the syntax of the instruction is ADD Rd, Rn, Rm where

• Rd specifies the destination register
• Rn and Rm specify the source registers

ADD R4, R5, #24 // R4 <-- R5 + 24

Here, the syntax of the instruction is ADD Rd, Rn, Imm where

• Rd specifies the destination register
• Rn specifies the source register
• Imm specifies an immediate value (constant)

13

Instruction Format and Operands

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Cond OPcode S Rn Rd Operand2

Assembly instructions ultimately become machine instructions;
above, a 32-bit instruction is divided into several fields that
determine its operation:

• Cond: condition codes; more later
• OPcode: specifies the operation to be executed
• Rn, Rd, Operand2: operands the operation works with/on

14

Instruction Format and Operands

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Cond OPcode S Rn Rd Operand2

Each operand has a limited set of allowable uses:

• Rd refers to a destination register to which results are written
• Rn and Rm refer to source registers; their value does not change
(unless the register is the same as Rd)

• Imm refers to an immediate value (the maximum number of bits
might be specified, e.g., Imm16 for a 16-bit value); immediates
are saved in the instruction itself

• Op2 refers to a flexible source operand, which is either:
• an 8-bit immediate value Imm8
• a register (with optional rotation or shift)

15

ARM ISA

General Data Processing Instructions
Textbook§2.8, D.4

Move Instructions

These instructions copy data into registers from other registers or
immediate values.

Where are immediate values stored?

MOV Rd, Op2 // MOVes value of Op2 into Rd
MOV Rd, #Imm16 // MOVes immediate 16-bit value into Rd

MVN Rd, Op2 // MOVes complement (Not) of Op2 value
// into Rd

MOVT Rd, #Imm16 // MOVes Top: moves a 16-bit constant into
// the high-order 16 bits of Rd and leaves
// the lower bits unchanged

Why is the last instruction useful?

16

Logic Instructions

These instructions perform binary logic operations on operands,
useful for testing conditions, manipulating data, etc.

AND Rd, Rn, Op2 // bitwise AND operation
ORR Rd, Rn, Op2 // bitwise OR operation
EOR Rd, Rn, Op2 // bitwise Exclusive OR (XOR) operation
BIC Rd, Rn, Op2 // BIt Clear: Rd <-- Rn AND NOT(Op2)

17

Shift and Rotate Instructions

Shift and rotate instructions change the positions of bits within a
register, moving them left or right.

Note: Last operand can be a register or an immediate value, as with
logic operations.

LSL R1, R2, #5 // Logical shift left
LSR R1, R2, R3 // Logical shift right
ASR R1, R2, #4 // Arithmetic shift right

• Logical⇒ pad with 0s, Arithmetic⇒ extend sign bit

ROR R1, R2, #2 // Circular rotate right

• Less significant bits (on the right of the register) are moved into
the most significant positions (on the left of the register).

18

Shift and Rotate Instructions

Logical shift left 0000 0011 by 2 =

Logical shift right 0000 0011 by 1 =

Logical shift right 1111 0000 by 3 =

Arithmetic shift right 1111 0000 by 3 =

Rotate right 1111 0010 by 3 =

Observation
Shifting left by k = multiplication by 2k

Arithmetic shifting right by k = division by 2k

19

Arithmetic Instructions

Addition/subtraction instructions:
ADD R0, R1, R2 // R0 <-- R1 + R2
ADD R0, R1, #-24 // R0 <-- R1 + (-24)
SUB R0, R1, #24 // R0 <-- R1 - (24)
ADD R0, R1, R2, LSL#2 // R0 <-- R1 + R2*4

What are the uses of LSL in this case?

Multiply instruction
MUL R2, R3, R4 // R2 <-- R3 * R4

Multiply-accumulate instruction
MLA R2, R3, R4, R5 // R2 <-- (R3 * R4) + R5

These multiply instructions only return the 32 least significant bits.

There are other, more complex arithmetic instructions; they are not
covered in this course.

20

ARM ISA

Memory Instructions
Textbook§2.4, D.3

Arrays in C (Review)

short ar r [5] = { 1 , 2 , 3 , 4 , 5 }

Array elements are allocated one after
the other in memory. (Remember
endianess!)

For a 1D array, arr[i] is stored at
address: &arr[0]+sizeof(TYPE)*i
where
• & means address of
• &arr[0] is the address of the first
array element, and base (starting)
address of the array

• sizeof returns the number of bytes
required by TYPE

• sizeof(TYPE)*i is therefore the
offset of element i

ContentAddress
...

0x010x1000
0x000x1001
0x020x1002
0x000x1003
0x030x1004
0x000x1005
0x040x1006
0x000x1007
0x050x1008
0x000x1009
...

Byte view

ContentAddress
...

10x1000

20x1002
30x1004

40x1006
50x1008
...

Half-word
view

21

Array Access Example

Consider the following C code snippet:

i n t ar r [8] = { 1 7 , 58 , 79 , 1 5 , . . . } ; // s i z eo f (i n t) = 4 bytes
. . .
for (i n t i =0 ; i <8 ; i ++) {
v = a r r [i] ;
. . .
a r r [i] = v ;

}

When reading from an array, we need to:

• Get the base address (&arr);
• Multiply the index by the element size (i*4) to get the offset;
• Add to calculate the address of the element; and, then, finally
• Access memory!

22

i n t ar r [8] = { 1 7 , 58 , 79 , 1 5 , . . . } ; // s i z eo f (i n t) = 4 bytes
. . .
for (i n t i =0 ; i <8 ; i ++) {
v = a r r [i] ;
. . .
a r r [i] = v ;

}

To access arr we need an instruction that can read from memory:

LDR Rd, [Rn] // Rd <-- Mem[Rn], Rn = address in bytes

Our C code is implemented in part with the following assembly:

// R0 = variable i
// R1 = base address of arr (&arr)
MUL R2, R0, #4 // R2 = i*4 -- calculate offset for index i
ADD R3, R1, R2 // R3 = arr + i*4 -- absolute address of arr[i]
LDR R4, [R3] // R4 = arr[i] -- R4 <-- Mem[R1+i*4]

23

i n t ar r [8] = { 1 7 , 58 , 79 , 1 5 , . . . } ; // s i z eo f (i n t) = 4 bytes
. . .
for (i n t i =0 ; i <8 ; i ++) {
v = a r r [i] ;
. . .
a r r [i] = v ;

}

ContentAddress
...

MUL R2,R0,#40x0100

ADD R3,R1,R20x0104

LDR R4,[R3]0x0108
...

170x1000

580x1004

790x1008

150x100C
...

Assume the base address
of arr is 0x1000 and i=3.
After execution of the load:

Registers
R0 0x00000003
R1 0x00001000
R2 0x0000000C
R3 0x0000100C
R4 0x0000000F

24

Load and Store Instructions

Memory accesses commonly∗ access words and take the form of:
LDR Rd, <EA> // Rd <-- Mem[EA]; reads a 32-bit word
STR Rm, <EA> // Mem[EA] <-- Rn; writes a 32-bit word

Loads and stores do not generally specify a memory address
explicitly; instead, they compute an effective address (EA) from a
base address and an offset.

Effective Address Calculation
EA = base+ offset

Calculating an EA is very convenient for implementing common
program structures: e.g., loops and arrays; and, complex objects.
∗ Other load and store instructions access bytes or half words,
doubles, or multiple words, and manipulate addresses in more
complex ways.

25

Effective Address Calculation

• The base address is always stored in a register (Rn)
• There are three kinds of offset:

• Immediate: a 12-bit number that is added to or subtracted from
the base address

• Index register: the offset is stored in a register (Rm)
• Scaled index register: the value in the index register is shifted by a
specified immediate value, then added to or subtracted from the
base address

Methods for Calculating the Effective Address

Name Assembler syntax Address generation

register indirect [Rn] EA = Rn
immediate offset [Rn, #offset] EA = Rn + offset
offset in Rm [Rn, ± Rm, shift] EA = Rn ± shifted(Rm)

26

Back to our Example

. . .
v = a r r [i] ;
. . .

Immediate (with #0): EA = R3
// R0 = variable i
// R1 = base address of arr (&arr)
MUL R2, R0, #4 // R2 <-- i*4 -- calculate offset for index i
ADD R3, R1, R2 // R3 <-- arr + i*4 -- absolute address of arr[i]
LDR R4, [R3, 0] // R4 <-- Mem[R3]

Index: EA = R1+ R2
MUL R2, R0, #4 // R2 <-- i*4
LDR R4, [R1, R2] // R4 <-- Mem[R1+R2]

Scaled Index: EA = R1+ (R0 << 2) = R1+ (R0× 4)
LDR R4, [R1, R0, LSL#2] // R4 <-- Mem[R1+R0<<2]

27

Store Instructions Calculate EA the Same Way

Here’s our C code again, but this time we’re copying into arr:
i n t ar r [8] = { 1 7 , 58 , 79 , 1 5 , . . . } ; // s i z eo f (i n t) = 4 bytes
. . .
for (i n t i =0 ; i <8 ; i ++) {
v = a r r [i] ;
. . .
a r r [i] = v ;

}

We have the same options for calculating the effective address as we
do for load instructions. E.g.,:

Scaled Index: EA = R1+ (R0 << 2) = R1+ (R0× 4)
// R0 = variable i
// R1 = base address of arr (&arr)
// R4 = v
STR R4, [R1, R0, LSL#2] // Mem[R1+R0<<2] <-- R4

28

Checkpoint

For each instruction below, calculate the EA (Effective Address) given
the following register content:

R2 = 0x1A4DDA38
R6 = 0x10004008
R8 = 0x10004000
R10 = 0x00000002

LDR R2, [R6, #-4]

LDR R2, [R6, #0x200]

STR R2, [R6, -R8]

STR R2, [R8]

LDR R2, [R8, R10, LSL#3]

29

Pointers in C (Review)

• A pointer (int *ptr;) is an address
• You can perform pointer arithmetic to change the address

• E.g., ptr = ptr+2;
• Also, pre-increment (++ptr), and post-increment (ptr++)

• You can dereference a pointer (*ptr) to access the data at the
address

In C, you declare that a variable is a pointer with *
i n t *p ; // p i s a pointer to an in teger

// i . e . p i s the memory address of a 32− b i t va r iab le
// s ince p contains an address , i t i s also 32− b i t s
// NB that ” i n t * p ; ” and ” i n t * p ; ” also do the same thing

i n t x ;
i n t a [5] = { 20 , 35 , 0 , 42 , 1 2 } ;

p = &a [3] ; // the address of the 4 th element of ar r i s stored in p

x = *p ; // here , * means i nd i r e c t i on (the value addressed by p)
// i t ’ s t r i c k y ! C uses * to mean d i f f e r e n t th ings in context !

What is the value stored in x? 30

If in C we dereference a pointer to access the value at its address:
x = *p ;

This is accomplished with the following assembly:

LDR R0, p // Load the value of p (&arr[3]) into R0
LDR R1, [R0] // R1 <-- Mem[R0]
STR R1, x // x <-- R1

Why is it important to know the pointer type?
i n t *p ;

Because we can do arithmetic on the pointer:
p = 0x1000 ;

What is p+1?

31

i n t ar r [8] = { 56 , 26 , 88 , 45 , −45 , 7 7 , 98 , 1 3 } ;
p r i n t (a r r) ;
p r i n t (& ar r [1]) ;

i n t *pt r = &ar r [1] ;
p r i n t (p t r) ;
p r i n t (* pt r) ;

p r i n t (p t r + 2) ;
p r i n t (* (p t r + 2)) ;

p r i n t (p t r + +) ;
p r i n t (p t r) ;

p r i n t (++ pt r) ;
p r i n t (p t r) ;

p r i n t (* (p t r + +)) ;
p r i n t (* (++ pt r)) ;

ContentAddress
...

560x1000

260x1004

880x1008

450x100C
-450x1010

770x1014

980x1018

130x101C
...

Assuming arr starts at address 0x1000, what is printed by this C
code?

32

Pointers in Assembly
C code without pointers:

i n t ar r [8] = . . . ;
for (i n t i =0 ; i <8 ; i ++) {
v = a r r [i] ;
. . .

}

Loop body in assembly:

// R0 = i
// R1 = base address of arr
// R2 = v
LDR R2,[R1,R0,LSL#2] // v=arr[i]
ADD R0,R0,#1 // i++

C code with pointers:

i n t ar r [8] = . . . ;
i n t* pt r = a r r ;
while (ptr < (a r r +8)) {
v = * (p t r + +) ;
. . .

}

Loop body in assembly:

// R0 = ptr
// R1 = v
LDR R1, [R0] // v = *ptr
ADD R0, R0, #4 // ptr=ptr+4

Using a pointer instead of arr[i] uses one less register in
assembly! This is good for performance. A good compiler will
automatically transform code to use pointers.

33

Post/Pre-indexed Addressing Mode

ARM includes methods for automatically updating addresses after
memory accesses, improving performance.

Recall register indirect addressing:
// R0 = ptr
// R1 = v
LDR R1, [R0] // v = *ptr
ADD R0, R0, #4 // ptr=ptr+4

Post-indexed addressing performs
the access then updates

LDR R1,[R0],#4 // v = *(ptr++)

Pre-indexed addressing updates
(!) then performs the access

LDR R1,[R0,#4]! // v = *(++ptr)

Using one instruction to read memory and increment the pointer:

• saves time (fewer instructions are executed),
• saves energy (fewer instructions are read from memory), and
• reduces system costs (less program memory is needed).

34

Post-indexed addressing performs
the access then updates

LDR R1,[R0],#4 // v = *(ptr++)

Pre-indexed addressing updates
(!) then performs the access

LDR R1,[R0,#4]! // v = *(++ptr)

Assuming R0=0x1008 before the LDR
instruction executes, what’s the content
of R0 and R1 after the instruction
executes?

ContentAddress

...

560x1000

260x1004

880x1008

450x100C

-450x1010

...

35

Load/Store Addressing Mode Summary

Name Assembler Syntax Address Generation

Register indirect: [Rn] Address = Rn

Offset:
immediate offset [Rn,#offset] Address = Rn + offset
offset in Rm [Rn,±Rm,shift] Address = Rn ± shifted(Rm)

Pre-indexed:
immediate offset [Rn,#offset]! Address = Rn + offset

Rn← Address
offset in Rm [Rn,±Rm,shift]! Address = Rn ± shifted(Rm)

Rn← Address

Post-indexed:
immediate offset [Rn],#offset Address = Rn

Rn← Rn + offset
offset in Rm [Rn],±Rm,shift Address = Rn

Rn← Rn ± shifted(Rm)

• offset = a signed number (12 bits)
• shift = direction # integer
where direction is LSL for left shift or LSR for right shift,
and integer is a 5-bit unsigned number specifying the shift amount

36

Loading and Storing Byte and Half-words

Dedicated instructions load/store values smaller than a word:

LDRB (Load Register Byte) – zero padded to 32 bits
LDRH (Load Register Halfword) – zero padded to 32 bits

LDRSB (Load Register Signed Byte) – sign extended to 32 bits
LDRSH (Load Register Signed Halfword) – sign extended to 32 bits

STRB (Store Register Byte) – stores low byte of Rd
STRH (Store Register Halfword) – Store the low halfword of Rd

37

Loading and Storing Multiple Words

LDM and STM load and store blocks of words in consecutive memory
addresses into multiple registers.

STM: registers are accessed in order from largest-to-smallest index
(R15..R0)

LDM: registers are accessed in order from smallest to largest index
(R0..R15)

To determine the direction in which memory addresses are
computed, you must use one of the following suffixes for the
mnemonic to determine how to update the address:

• IA – Increment After the transfer (default)
• IB – Increment Before the transfer
• DA – Decrement After the transfer
• DB – Decrement Before the transfer

Registers need not be consecutive, e.g.,: LDMIA R8, {R0,R2,R9}.
38

Example:

LDMIA R3 ! , { R4 , R6−R8 , R10 }

R4← Mem[R3]

R6← Mem[R3 + 4]

R7← Mem[R3 + 8]

R8← Mem[R3 + 12]

R10← Mem[R3 + 16]

R3← R3 + 20 // increment after

39

PC-relative Addressing

• The PC can be used as the base register
to access memory locations in terms of
their distance relative to PC+8

• The processor updates PC← PC+4, and
then fetches the next instruction at that
address, which starts executing before
the current instruction is finished, so it
also increments PC by 4

• This is called pipelining (covered later)

• PC-relative addressing is used when
accessing variable declared statically

ContentAddress

...

960x0FF0

-80x0FF4

780x0FF8

260x0FFC

LDR R0, [PC,#-16]0x1000

...

What’s the content of R0 after executing this instruction?
LDR R0, [PC, #-16]

The SP may be used in a similar way to access data on the stack
(more on this later, too).

40

ARM ISA

Assembling Simple Programs
Textbook§2.5, 2.9, D.5

Assembler Directives

We are almost ready to write out first assembly language program!

The assembler also accepts commands about how it should
assemble your program. These are not machine instructions and are
never translated to executable machine language.

Some common ones (see the Altera documentation for more):

.global symbol // makes symbol visible outside object file

.word expression // allocates a 32-bit variable in memory

.equ name, value // name is replaced with value in this file

.text // marks the beginning of the code

.end // marks the end of the code

• Text section = where code goes
• Data section = where data goes (everything except code)

41

Loading 32-bit Constants into Registers

We often need a way to load large constant values into registers, e.g.,
32-bit addresses. The assembler uses a pseudo-instruction to do this.

LDR Rd, =value // pseudo-instruction: is it a load? a mov?

• If the value fits within the range allowed in a MOV instruction,
the assembler will produce a MOV instruction

• Otherwise, the assembler places the constant value into a
literal pool in memory, in the data section, where it can be read
at runtime:

LDR Rd, [PC, #offset]

where Mem[PC + offset] = value.

42

Example of 32-bit Constants (and our first programs!)

Loading a small constant:
.global _start
.text
_start: LDR R0, =0x00000020
.end

address content code
0x00000000 0xE3A00020 MOV R0, #32

Loading a large constant:
.global _start
.text
_start: LDR R0, =0xF0F0F0F0
.end

address content code
0x00000000 0xE51F0004 LDR R0, [PC, #-4]
0x00000004 0xF0F0F0F0 .word 0xF0F0F0F0

43

Declaring and initializing a variable, and defining expressions:
.global _start
n: .word 7
.equ m, 0x12
.equ o, 0x1234
_start:

LDR R0, n // R0 <-- Mem[n]
LDR R1, =m // R1 <-- m
LDR R2, =o // R2 <-- o

address content code
0x00000000 0x00000007 .word 7
0x00000004 0xE54F000c LDR R0, [PC, #-12]
0x00000008 0xE3A01012 MOV R1, #18
0x0000000C 0xE51F2004 LDR R2, [PC, #-4]
0x00000010 0x00001234 .word 0x00001234

• LDR R0,n is a real instruction where the label n = PC-12
• LDR R1,=m and LDR R2,=o are pseudo-instructions

What values are in each register after execution?
44

ARM ISA

CPSR & Branching
Textbook§D.9

Current Program Status Register (CPSR)

N Z C V
31 30 29 28 0123467

I F M[4:0]

Condition code flags Interrupts Processor mode

• Condition code flag bits are set to 1 when the condition is true
• N = Negative, Z = Zero, C = Carry, V = Overflow

• Interrupt flags
• I = IRQ mask bit, F = FRQ (Fast interrupt) mask bit

• Processor mode
• 10000 = User (most of user code)
• 10001 = Serving fast interrupt (when dealing with I/O)
• 10010 = Serving normal interrupt (when dealing with I/O)
• 10011 = Supervisor (used by the Operating System)

CPSR is not a general-purpose register
Special instructions modify the CPSR, directly or as a side-effect,
while others will behave differently depending on CPSR state.

45

Condition Codes

Combinations of condition code flags are used to determine if the
result of an instruction satisfies a particular inequality.

Suffix Meaning CPSR Flags
EQ EQual(zero) Z=1
NE Not Equal (nonzero) Z=0
CS/HS Carry Set/ unsigned Higher or Same C=1
CC/LO Carry Clear / unsigned Lower C=0
MI MInus (negative) N=1
PL PLus (positive or zero) N=0
VS oVerflow Set V=1
VC oVerflow Clear V=0
HI unsigned Higher C=1 AND Z=0
LS unsigned Lower or Same C=0 OR Z=1
GE signed Greater or Equal N=V
LT signed Less Than N!=V
GT signed Greater Than Z=0 AND (N=V)
LE signed Less or Equal Z=1 OR (N!=V)
AL ALways executed (usually ommitted) None tested

46

Branch Instructions

Branch instructions read the condition code flags to determine
whether or to jump to a label, or continue with the next instruction.

B{cond} LABEL

• The condition cond specifies a test of the condition code bits
• If the condition is true, the next instruction executed will be at
address LABEL, the target

• If the condition is false, the processor simply executes the next
instruction (fall-through)

Branch instructions enable control flow
Branch instructions are essential for control flow operations in
software: e.g., if/else, loops, function calls, etc.

47

Test & Compare Instructions

Some instructions are designed specifically to set condition flags:

TST Rs, Op2

Zero flag (Z) set to result of AND(Rs, Op2)

TEQ Rs, Op2

Zero flag (Z) set to result of XOR(Rs, Op2)

CMP Rs, Op2

Condition code flags set to result of Rs - Op2 (Rs unchanged)

CMN Rs, Op2

Condition code flags set to result of Rs + Op2 (Rs unchanged)

48

Example

C code:

i f (x >3)
y = 7 ;

else
y = 1 3 ;

Corresponding ARM assembly:

LDR R0, X // R0 <-- Mem[X]
CMP R0, #3 // R0-#3, only update CPSR
BLE ELSE // if R0-#3<=0 then branch
MOV R1, #7 // ** if code **
B END // branch to END

ELSE: MOV R1, #13 // ** else code **
END: STR R1, Y // Mem[Y] <-- R1

As an exercise, determine the contents of each register and CPSR
after each instruction, assuming:

1) x = 6,
2) x = 2, and
3) x = 3

49

Setting Conditions Codes with S Suffix

Data processing instructions (arithmetic, logic, move) affect the
condition codes if the suffix S is appended to the mnemonic.

Example:

ADDS R0, R1, R2 // sets condition codes
ADD R0, R1, R2 // does not

Condition codes are set based on the result of the data processing
instruction.

Note that the following two instructions are equivalent:

SUBS R0, R1, R2
CMP R1, R2

Unless the results of the subtraction is required, CMP is preferred,
since one less register is used.

50

Conditional Execution

Branch instructions are executed when the stated condition is true.
Most ARM instructions can be executed conditionally, too.

Instruction format: OP{S}{cond} Rd, Rn, Op2

i f (x >3)
y = 7 ;

else
y = 1 3 ;

LDR R0, X
CMP R0, #3 // set flags
MOVGT R1, #7 // if R0-3 > 0
MOVLE R1, #13 // if R0-3 <= 0
STR R1, Y

If the condition is true, then the instruction executes, otherwise the
instruction has no effect. This can save some branches, resulting in
compact and fast code.

This is a pretty advanced and ARM-specific technique. For now,
thinking in terms of branches keeps things simple.

51

ARM ISA

Putting it all together:
calculating a dot product in assembly

Dot Product

The dot product of two vectors A and B is defined as:
n−1∑
i=0

A(i) · B(i)

C program for the dot product of two vector of six integers:
void main () {
i n t n = 6 ;
i n t vectorA [6] = { 5 , 3 , −6 , 19 , 8 , 1 2 } ;
i n t vectorB [6] = { 2 , 14 , −3 , 2 , −5 , 3 6 } ;
i n t dotP ;
i n t i ;

dotP = 0 ;
for (i = 0 ; i <n ; i ++)
dotP += vectorA [i] * vectorB [i] ;

p r i n t f (” Dot product = %d\n” , dotP) ;
}

52

C variable declarations:
i n t n = 6 ;
i n t vectorA [6] = { 5 , 3 , −6 , 19 , 8 , 1 2 } ;
i n t vectorB [6] = { 2 , 14 , −3 , 2 , −5 , 3 6 } ;
i n t dotP ;
i n t i ;

Assembly memory allocation:
n : . word 6
vectorA : . word 5 , 3 , − 6 , 1 9 , 8 , 1 2
vectorB : . word 2 , 14 , − 3 , 2 , − 5 , 36
dotP : . space 4
// i w i l l be stored in a reg i s t e r , no memory a l l o ca t i on needed

• .word a, b, c, ...
allocate storage for 1 or more words (4 bytes each) and initialize
with the values a, b, c, ...

• .space 4
allocate 4 bytes without initialization

• n, vectorA, ... are addresses (labels) corresponding to the start
of the allocated space

53

The for loop expands to a number of initialization instructions and
other code that is repeated once each iteration.
dotP = 0 ;
for (i = 0 ; i <n ; i ++)
dotP += vectorA [i] * vectorB [i] ;

MOV R3 , #0 // r e g i s t e r R3 w i l l accumulate the product

LDR R0 , = vectorA // R0 <−− vectorA base address (pseudo− i n s t r u c t i on)
LDR R1 , = vectorB // R1 <−− vectorB base address (pseudo− i n s t r u c t i on)
LDR R2 , n // R2 <−− Mem[n] = 6

MOV R6 , #0 // i n i t i a l i z e i t e r a t i o n va r i ab le i

LOOP :
CMP R6 , R2 // do i −n and set f l a g s accord ing ly
BGE END // we ’ re done i f i −n >= 0 (i f i >= n)
LDR R4 , [R0] , #4 // get vectorA [i] ; post − index increments R0 a f t e r
LDR R5 , [R1] , #4 // get vectorB [i] ; post − index increments R1 a f t e r
MLA R3 , R4 , R5 , R3 // R3 <−− (R4*R5)+ R3
ADD R6 , R6 , # 1 // i ++
B LOOP

END :
STR R3 , dotP // Mem[dotP] <−− R3

54

A more efficient approach uses SUBS:
dotP = 0 ;
i = n ;
do { // assumes there i s at l eas t one element in each array
dotP += vectorA [i] * vectorB [i] ;
i − − ;

} while (i >0)

MOV R3 , #0 // r e g i s t e r R3 w i l l accumulate the product

LDR R0 , = vectorA // R0 = vectorA base address (pseudo− i n s t r u c t i on)
LDR R1 , = vectorB // R1 = vectorB base address (pseudo− i n s t r u c t i on)
LDR R2 , n // R2=6 (R2 i s i t h i s time)

LOOP :
LDR R4 , [R0] , #4 // get vectorA [i] ; post − index increments R0 a f t e r
LDR R5 , [R1] , #4 // get vectorB [i] ; post − index increments R1 a f t e r
MLA R3 , R4 , R5 , R3 // R3 = (R4*R5)+ R3
SUBS R2 , R2 , # 1 // i −− and set condi t ion f l a g s
BGT LOOP // we ’ re not done i f i >0

STR R3 , dotP

• One less register used
• 5 vs 7 instructions in the loop body

55

Last bit, printing the result:

p r i n t f (‘ ‘ Dot product = %d\n ’ ’ , dotP) ;

We have to call a library subroutine to print the results. This usually
requires an operating system to print information on a terminal, or
direct access to an I/O device in assembly (e.g., a screen). We will see
that in another lecture.

56

Full dot product code in ARM assembly

. g lobal _ s t a r t // t e l l s the assembler/ l i n k e r where to s t a r t execut ion

n : . word 6
vectorA : . word 5 , 3 , − 6 , 1 9 , 8 , 1 2
vectorB : . word 2 , 14 , − 3 , 2 , − 5 , 36
dotP : . space 4

_ s t a r t :
MOV R3 , #0 // r e g i s t e r R3 w i l l accumulate the product
LDR R0 , = vectorA // R0 = vectorA base address (pseudo− i n s t r u c t i on)
LDR R1 , = vectorB // R1 = vectorB base address (pseudo− i n s t r u c t i on)
LDR R2 , n // R2=6 (R2 i s our loop i t e r a t i o n va r i ab le i)

LOOP :
LDR R4 , [R0] , #4 // get vectorA [i] ; post − index increments R0 a f t e r
LDR R5 , [R1] , #4 // get vectorB [i] ; post − index increments R1 a f t e r
MLA R3 , R4 , R5 , R3 // R3 = (R4*R5)+ R3
SUBS R2 , R2 , # 1 // i −− and set condi t ion f l a g s
BGT LOOP // we ’ re not done i f i >0

STR R3 , dotP // save our r e su l t in memory

STOP :
B STOP // i n f i n i t e loop once we ’ re done

57

ARM ISA

Subroutine Calls
Textbook§2.6, 2.7, D.4

Subroutines

It is typical programming practice to reuse blocks of code in a
subroutine (i.e., procedure, function, method) that can be called from
many places in a program.

i n t add3 (i n t a , i n t b , i n t c) {
return a + b + c ;

}

void main () {
i n t sum = 0 ;

sum += add3 (1 , 2 , 3) ;
sum += 1 0 ;
sum += add3 (1 0 , 20 , 3 0) ;

p r i n t f (”Sum = %d\n” , sum) ;
}

58

Requirements for calling subroutines:
• We should be able to call a
subroutine from anywhere in our
program, i.e., change the PC so
that the routine is executed

• A subroutine must be able to
return, i.e., change the PC so that
execution continues immediately
after the point where it was
called

• We should be able to pass
parameters (or arguments) that
may take different values across
different calls

• A subroutine must be able to
return a value

i n t add3 (i n t a , i n t b , i n t c)
{
return a + b + c ;

}

void main () {
i n t sum = 0 ;

sum += add3 (1 , 2 , 3) ;
sum += 1 0 ;
sum += add3 (1 0 , 20 , 3 0) ;

p r i n t f (”Sum = %d\n” , sum) ;
}

59

Calling and Returning

A subroutine call is implemented with the Branch and Link
instruction BL that stores the address of the next instruction (return
address) in the link register LR (R14).

BL addr // LR <-- PC +4; PC <-- addr

To return, branch to the address stored in the link register with the
BX instruction (branches to the address in a register).

BX Rn // PC <-- Rn

C code:

boo () {
coo () ;
. . .

}
coo () {

. . .
return ;

}

ARM assembly:

boo: BL coo // LR <-- PC +4; PC <-- coo
...

coo: ...
BX LR // PC <-- LR

60

Nested Subroutine Calls

boo () {
coo () ;

B1 : doo () ;
B2 :
return ;
}
coo () {

doo () ;
C : return ;
}
doo () {

return ;
}

• These calls are nested: boo calls coo, coo calls doo
• If we save return addresses in LR, calling doo from
coo overwrites the return address back to boo!

• doo() is called from two different places, and is
expected to return to different places for each call

• How do we remember the return addresses for each
call, in the correct order? (I.e., the reverse call
order.)

boo calls coo save B1
coo calls doo save C
doo returns to coo PC← C
coo returns to boo PC← B1
boo calls doo save B2
doo returns to boo PC← B2

Which data structure shall we use
to save these addresses?

61

We need a way to recall return addresses
(and later, other things) in the opposite
order they were saved.
We will use a Last-in-First-out (LIFO) data
structure called a stack! The stack is
saved in main memory, and accessed
with special load and store instructions.

source: Mk2010 / CC 4.0 BY-SA

62

https://commons.wikimedia.org/wiki/File:A_stack_of_empty_sushi_plates_at_a_conveyor_belt_sushi_restaurant_in_Taiwan.jpg

Stack Operations

• push(value): adds new item value to top of the stack (TOS)
• value = pop(): returns and removes the top element
• value = peek(distance): returns (but does not remove)
the value of an element at a distance relative to TOS;
peek(0) returns the element at the TOS

source: Maxtremus / CC0

63

https://commons.wikimedia.org/w/index.php?curid=44458752

ARM Memory Layout

• Recall: text is where compiled code goes
• Recall: data is where compile-time
statically allocated data goes

• The size of text and data sections are fixed
at compile-time

• The heap is where dynamically allocated
(e.g., using new or malloc) data goes

• The heap starts at lower addresses and
grows “downward” toward higher addresses

• The bottom of the stack is at a fixed
address and the top of stack grows
“upward”, towards lower memory addresses

free space

stack

heap

text

data

0xffffffff

0x00000000

64

The Stack in ARM

• The stack is used to support
subroutines: saving return
addresses, function
arguments, etc

• The data elements on the
stack are always∗ words;
memory accesses to the stack
are always∗ aligned

• Register R13 is the stack
pointer (SP); it points to TOS

-28 SP (top of stack)

17

739

...

... stack bottom

∗ by convention; breaking from convention may break your code

65

Stack Operations in ARM

Push from Rj

STR Rj, [SP, #-4]!

SP← SP - 4
Mem[SP]← Rj

Pop into Rj

LDR Rj, [SP], #4

Rj← Mem[SP]
SP← SP + 4

Peek(i) into Rj

LDR Rj, [SP, #const]

where const = i ∗ 4
Rj← Mem[SP+const]

-28 SP

17

739

...

Assuming Rj=19, SP=0xFFFFABCC and i=2,
what’s the content of the stack, register Rj,
and SP, after each instruction executes?
(consider them separately)

66

Pushing and Popping Multiple Elements

Often, several elements need to be pushed/popped onto/from the
stack, e.g., at the start and end of subroutines.

There are two pseudoinstructions that are useful aliases for STM and
LDM (slide 38):

• PUSH {R1, R3-R5} is equivalent to
STMDB SP!, R1, R3-R5
(R5 is pushed first, and R1 ends up at the top of the stack)

• POP {R1, R3-R5} is equivalent to
LDMIA SP!, R1, R3-R5
(top of the stack ends up in R1)

67

Nested Subroutine Calls, Revisited

main () {
boo () ;

A : . . . ;
}
boo () {

push (LR) ;
coo () ;

B1 : doo () ;
B2 : LR = pop () ;

return ;
}
coo () {

push (LR) ;
doo () ;

C : LR = pop () ;
return ;

}
doo () {

return ;
}

Subroutines that might call another subroutine
must follow this convention:
• Before you call a subroutine: push the
return address stored in LR onto the stack

• When the subroutine returns: pop the
return address off the stack into LR

Action Stack (TOS on left) LR

main calls boo A
boo saves LR A A
boo calls coo A B1
coo saves LR B1 A B1
coo calls doo B1 A C
doo returns B1 A C
coo restores LR A B1
coo returns A B1
boo calls doo A B2
doo returns A B2
boo restores LR A
boo returns A

68

Passing parameters and returning values

For a small number of parameters, the ARM APCS recommends using:
• R0 – R3 (A1 – A4) for passing parameters, and
• R0 (A1) for the return value

i n t add3 (i n t a , i n t b , i n t c) {
return a + b + c ;

}

MOV R0, #1
MOV R1, #2
MOV R2, #3
PUSH {LR} // STR LR,[SP,#-4]!; saves return address
BL add3
STR R0, SUM // return value is in R0
POP {LR} // LDR LR,[SP],#4; restores return address
...

add3: ADD R0, R0, R1
ADD R0, R0, R2
BX LR

69

https://developer.arm.com/documentation/ihi0042/latest/

ARM APCS Uses the Callee-save Convention

add3: ADD R0, R0, R1
ADD R0, R0, R2
BX LR

• In the previous example, the callee overwrote R0, which was OK,
since the caller knew that the return value would be in R0

• In general, the caller may need the register values after the
callee returns, so the rule is a callee is responsible for leaving
the registers as it found them

Callee-save convention:
A subroutine should save any∗ registers it wants to use on the stack
and then restore the original values to the registers after it is
finished using them.

∗ The ARM APCS states that argument registers A1 – A4 need not be
saved, but remember: they might be changed inside of subroutines!

70

Registers in the ARM Architecture Procedure Call Standard

Most registers are callee-saved: if a subroutine is going to use them,
their state must first be saved (on the stack), and later restored (from
the stack).

Register Synonym Special Role in the AAPCS
r15 PC Program counter
r14 LR Link register
r13 SP Stack pointer
r12 IP Intra-procedure scratch register
r11 v8 FP Frame pointer OR variable register 8
r10 v7 Variable register 7
r9 v6/SB/TR Platform register
r8 v5 Variable register 5
r7 v4 Variable register 4
r6 v3 Variable register 3
r5 v2 Variable register 2
r4 v1 Variable register 1
r3 a4 Argument / scratch register 4
r2 a3 Argument / scratch register 3
r1 a2 Argument / result / scratch register 2
r0 a1 Argument / result / scratch register 1

71

Passing Parameters On the Stack

When you have more than four parameters, you can pass four in
registers, and the additional ones on the stack. (This is what
compilers do, and what the APCS recommends.)

Or, you can pass all parameters and the return value on the stack.
Passing parameters in registers will always be faster. Why?

When you want to pass a data structure that does not fit into four
words, you must use the stack (for at least part of it). Example:
s t ruc t l a rgeDataS t ruc t {
i n t a ;
i n t b ;
i n t c ;
i n t d ;
i n t e ;

}

Let’s see how to pass everything on the stack with a program that
sums a list of numbers. 72

ARRAY : . word 6 , 5 , 4 , 3 , 2 , 1 , 1 4 , 1 3 , 1 2 , 1 1 , 1 0 , 9 , 8 , 7 // sum these
N : . word 14 // th i s many of them
SUM : . space 4 // re su l t goes here

. g lobal _ s t a r t
_ s t a r t : LDR A1 , =ARRAY // A1 points to ARRAY

LDR A2 , N // A2 contains number of elements to add
PUSH { A1 , A2 , LR } // push parameters and LR (A1 i s TOS)
BL l i s t add // c a l l subroutine
LDR A1 , [SP , #0] // return i s at TOS
STR A1 , SUM // store i t in memory
ADD SP , SP , #8 // c lea r parameters
POP { LR } // res tore LR

stop : B stop
l i s t add : PUSH { V1 −V3 } // cal lee −save r e g i s t e r s l i s t add uses

LDR V1 , [SP , # 16] // load param N from stack
LDR V2 , [SP , # 1 2] // load param ARRAY from stack
MOV A1 , #0 // c lea r R0 (sum)

loop : LDR V3 , [V2] , #4 // get next value from ARRAY
ADD A1 , A1 , V3 // form the pa r t i a l sum
SUBS V1 , V1 , #1 // decrement loop counter
BGT loop
STR A1 , [SP , # 1 2] // store sum on stack , rep lac ing ARRAY
POP { V1 −V3 } // res tore r e g i s t e r s
BX LR

73

Passing by Value, Passing by Reference

Recap from C:
• Passing by value: a copy of the value
is passed to the callee. If the copy is
modified, there is no effect on the
caller side.

• Passing by reference: an address in
memory where the value is stored is
passed. The callee may modify the
value.

i n t add3Val (i n t a) {
a = a + 3 ;
return a ;

}
void add3Ref (i n t* a) {

*a = (*a)+3
}
void main () {
i n t i = 7 7 ;
i n t j ;

j = add3Val (i) ;
p r i n t (i) ;
p r i n t (j) ;

add3Ref (& i) ;
p r i n t (i) ;
p r i n t (j) ;

}

74

ARRAY: .word 6,5,4,3,2,1,14,13,12,11,10,9,8,7
N: .word 14
...

LDR A1, =ARRAY // A1 points to ARRAY
LDR A2, N // A2 contains number of elements to add
PUSH {A1, A2, LR} // push parameters and LR (A1 is TOS)
BL listadd // call subroutine

• The parameter N was passed by value, i.e., the actual value of N
(14) was passed to the subroutine; as it was modified in the
routine, the value in memory was not changed.

• The parameter ARRAY was passed by reference, i.e., a pointer to
the first element of the array was passed; if we’d changed
elements, they’d have been changed in memory.

75

Stack Frame

• The subroutine can∗ also allocate local
variables, only accessible by the
subroutine, on the stack.

• Using a frame pointer (R11) gives a
consistent reference to parameters
[FP, #const] and local variables
[FP, #-const]

• When nesting, the stack frame also includes
the return address and frame pointer

• FP is not strictly required; it is mainly used
to make assembly programs easier to write,
and to help with the debugger

• FP remains constant while in the same
subroutine

...

localvar3 SP

localvar2

localvar1

saved R4

saved R5

saved R6

saved LR

saved FP FP

param1

param2

param3

param4

... old TOS

...

∗ Most local variables are actually allocated this way, reducing the
total memory required by a program. 76

ARM Instruction Encoding
Textbook§2.13

ARM Assembly vs. Binary

Machine language instruction are encoded as binary, with 32∗ bits
per instruction (ARM ISA is RISC).

The binary representation of an instruction is divided into fields.
Each field encodes different information about the instruction.

The general format for most instructions:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Cond

source: https://alisdair.mcdiarmid.org/arm-immediate-value-encoding/

∗ 16-bit versions are available for many instructions, but such
instructions tend to be less flexible.

77

https://alisdair.mcdiarmid.org/arm-immediate-value-encoding/

Condition Field

Cond. field Suffix Meaning CPSR Flags
0000 EQ EQual(zero) Z=1
0001 NE Not Equal (nonzero) Z=0
0010 CS/HS Carry Set/ unsigned Higher or Same C=1
0011 CC/LO Carry Clear / unsigned Lower C=0
0100 MI MInus (negative) N=1
0101 PL PLus (positive or zero) N=0
0110 VS oVerflow Set V=1
0111 VC oVerflow Clear V=0
1000 HI unsigned Higher C=1 AND Z=0
1001 LS unsigned Lower or Same C=0 OR Z=1
1010 GE signed Greater or Equal N=V
1011 LT signed Less Than N!=V
1100 GT signed Greater Than Z=0 AND (N=V)
1101 LE signed Less or Equal Z=1 OR (N!=V)
1110 AL ALways executed (usually ommitted) None tested

1111 is not used.

78

Data Processing Instructions Encoding

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Cond I00 0 1 0 0 S Rn Rd Operand2

source: https://alisdair.mcdiarmid.org/arm-immediate-value-encoding/

Examples:

ADDGES R1, R2, R3

Cond=1010, I=0, S=1, Rn=0010, Rd=0001, Operand2[3-0]=0011

ADD R1, R2, #15

Cond=1110, I=1, S=0, Rn=0010, Rd=0001, Operand2=000000001111

Why are the register fields 4 bits wide?

79

https://alisdair.mcdiarmid.org/arm-immediate-value-encoding/

Immediate Value Encoding

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Cond I00 0 1 0 0 S Rn Rd Operand2

source: https://alisdair.mcdiarmid.org/arm-immediate-value-encoding/

12 bits are available to encode immediate value. However, the largest
value is not what you think it might be.

The ARM ISA has a very clever way of generating a lot of useful 32-bit
constants: 16 possible rotations of an 8-bit value

11 10 9 8 7 6 5 4 3 2 1 0

Rotate Immediate

source: https://alisdair.mcdiarmid.org/arm-immediate-value-encoding/

80

https://alisdair.mcdiarmid.org/arm-immediate-value-encoding/
https://alisdair.mcdiarmid.org/arm-immediate-value-encoding/

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0Rotation

7 6 5 4 3 2 1 00x0

7 6 5 4 3 21 00x1

7 6 5 43 2 1 00x2

7 65 4 3 2 1 00x3

7 6 5 4 3 2 1 00x4

7 6 5 4 3 2 1 00x5

7 6 5 4 3 2 1 00x6

7 6 5 4 3 2 1 00x7

7 6 5 4 3 2 1 00x8

7 6 5 4 3 2 1 00x9

7 6 5 4 3 2 1 00xA

7 6 5 4 3 2 1 00xB

7 6 5 4 3 2 1 00xC

7 6 5 4 3 2 1 00xD

7 6 5 4 3 2 1 00xE

7 6 5 4 3 2 1 00xF

source: https://alisdair.mcdiarmid.org/arm-immediate-value-encoding/

Rotations of an even number of times in a 32-bit word (0, 2, ..., 30)
https://alisdair.mcdiarmid.org/arm-immediate-value-encoding/

81

https://alisdair.mcdiarmid.org/arm-immediate-value-encoding/
https://alisdair.mcdiarmid.org/arm-immediate-value-encoding/

Load/Store Instruction Encoding

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Cond OPcode S Rn Rd Operand2

Rn is the base address.

Operand2 is the offset: an immediate value, or register value (four
LSBs), or register (four LSBs) and shift amount (five MSBs).

Note that:

• Not every addressing mode is available for every load/store
instruction.

• The range of permitted immediate values and the options for
scaled registers vary from instruction to instruction.

82

Branch Instruction Encoding

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Cond L offset1 0 1

Since the offset field is limited to 24 bits:

• the branch target address is relative to the current value of PC,
• the offset is left-shifted twice (offset is in words, not bytes)

L=1 is used for the BL instruction.
...

BEQ LABEL100010

Fall-through100410

...updated PC = 100810

...

TargetLABEL = 110010

...

In this example, we want to jump to
address 110010 which is 100 bytes away.

The relative offset is 92 bytes (100− 8)
= 23 words
= 0000 0000 0000 0000 0001 0111.

The condition field is EQ = 0000.
83

Conclusions

This set of lectures has presented the ARM ISA and introduced:

• the major classes of instructions
• the different addressing modes used by memory accesses
• the way ARM branches work
• the way subroutine calls are implemented in assembly with the
stack

• the encoding of instructions in binary

The next lecture will:

• look at the software toolchain used to translate high-level
languages to machine code

• the role of the operating system software

84

	Introduction
	ARM ISA
	Overview Textbook§D.1, D.2
	Syntax Textbook§2.5, D.4
	General Data Processing Instructions Textbook§2.8, D.4
	Memory Instructions Textbook§2.4, D.3
	Assembling Simple Programs Textbook§2.5, 2.9, D.5
	CPSR & Branching Textbook§D.9
	Putting it all together: calculating a dot product in assembly
	Subroutine Calls Textbook§2.6, 2.7, D.4

	ARM Instruction Encoding Textbook§2.13

