
ECSE324 : Computer Organization
Computer Technology and Abstractions
Textbook§Chapters 1 and 2

Christophe Dubach
Fall 2022

Revision history:
Warren Gross – 2017
Christophe Dubach – W2020, F2020, F2021, F2022
Brett H. Meyer – W2021, W2022
Some material from Hamacher, Vranesic, Zaky, and Manjikian, Computer Organization and Embedded Systems, 6 th ed, 2012, McGraw Hill
and Patterson and Hennessy, Computer Organization and Design, ARM Edition, Morgan Kaufmann, 2017, and notes by A. Moshovos

Timestamp: 2022/08/31 16:58:00

1

Disclaimer

It is possible (and even likely) that I will (sometimes) make mistakes
and give incorrect information during the live lectures. If you have
any doubts, please check the textbook, or ask for clarification online.

2

Introduction

Introduction

A brief history of computer technology
Textbook§1.6, 1.7

Mechanical Computers

Charles Babbage’s Difference Engine, 1822
A mechanical special-purpose computer designed to calculate
polynomials using numerical difference method.

• Number of parts:
25,000

• Cost: £17,470
∼= CAD$3M today

• Babbage never
completed it

• A working version was
finished in 1991
(London Science
museum)

https://youtu.be/KBuJqUfO4-w?t=203 3

https://youtu.be/KBuJqUfO4-w?t=203

The First Program(mer)

• Babbage saw his Difference Engine as a way
to simplify the calculation of mathematical
tables.

• Ada Lovelace saw its greater potential. In
1843, she wrote a program for it that
calculates Bernoulli numbers.

• She didn’t stop there, speculating about
universal computation, and even artificial
intelligence. Ada Lovelace,

1815–1852

“We might even invent laws for series or formulæ in an arbitrary
manner, and set the engine to work upon them, and thus deduce
numerical results which we might not otherwise have thought of
obtaining.” 4

Vacuum Tubes (∼ 1904-06)

Vacuum tubes act like an amplifier (make weak signals stronger)
or a switch (start and stop flow of electricity, very quickly).

If you have a very fast and small switch, you can implement efficient
logic gates.

source: www.engineering.com

They are power hungry and unreliable, however!

5

https://www.engineering.com/ElectronicsDesign/ElectronicsDesignArticles/ArticleID/16337/Vacuum-Tubes-The-World-Before-Transistors.aspx

First Generation Electrical Computers: 1940’s

Vacuum tubes = enabling technology

• 1000x faster than mechanical
computers

• Programming was done at the
machine level in machine language
or assembly language

Stored-program computers were a
revolutionary concept and the basis for
today’s computers. Programs and data
stored in the same memory!

EDSAC, 1949,
University of Cambridge, UK

https://youtu.be/2iPrFEC7Vhg?t=101

6

https://youtu.be/2iPrFEC7Vhg?t=101

Transistors: 1948

First transistor, Bell Labs, 1948
source: www.nutsvolts.com

Discrete transistors

Transistors replaced the large, fragile, power-hungry, and slower
vacuum tubes.

7

https://www.nutsvolts.com/magazine/article/the-story-of-the-transistor

Second Generation (1950s), Transistor-based Computers

Soon after, the first high-level programming languages emerged: e.g.,
FORTRAN (John Backus).

This led to the first compilers, developed to translate high-level
programs into assembly.

IBM 7070, 1958
8

Integrated Circuits (IC)

The first integrated circuit was a phase shift oscillator. It was invented by
Jack Kilby, at Texas Instruments (1958); he received a Nobel Prize in 2000.

9

Third Generation (1960s): Integrated-circuits Computers

Many of today’s ideas in computer
organization first appeared with
the first integrated-circuit
computers:
• Parallelism
• Pipelining
• Cache and virtual memory

Operating systems allowed
several programs to run on a
single machine.

DEC PDP-8 (1965)

10

Fourth Generation (1970s): Large Scale Integration

Large Scale Integration
Designing an entire CPU, or other
circuit of similar scale, on a
single chip.

Intel 4004 (1971)
• 1,000 logic gates
• 92,000 instructions per
second

• 2,250 (∼ 104) transistors

11

Very Large Scale Integration (VLSI): 1980s

Motorola 68000

A major architectural step in
microprocessors:
• 16- and 32-bit architectures

The 68000 was first implemented
in 1979:
• 68,000 (∼ 105) transistors
• ∼ 1 MIPS (Millions of
Instructions Per Second)

Used in:
• Apple Macintosh
• Sun, Silicon Graphics, and
Apollo workstations

12

Multicore Processors (2000s)

IBM Power4 (2001)

• The Power4 was the first
commercial multicore
processor

• It integrates two identical
copies on the same substrate

• 174M (∼ 108) transistors!

If ∼ 105 transistors is “VLSI,” what is this?

13

General-purpose Heterogeneous Processors (2010s)

Intel Sandybridge (2011)

• One of the first CPU + integrated GPU chips
• 1B (109) transistors

14

Domain-specific Architectures (2020s)

Google TPU (2016)

• The TPU accelerates neural networks for machine learning
applications

• It is a specialized computer optimized for 8-bit matrix
multiplication

15

Moore’s Law

Gordon Moore
(1929–),
co-founded
Intel
source: Intel Free Press / CC BY-SA 2.0

Moore’s Law: single-chip transistor count doubles every two years*.

Moore’s “Law” = Observation – and perhaps a self-fulfilling prophecy.

16

Computer Organization = how to organize all these transistors

• Make efficient use of them (improving performance, or energy
efficiency, or reliability).

• Do we design a machine that we can reuse for multiple
problems?
⇒ programmable, general-purpose computers ⇒ software

• Or, do we design a machine for a specific purpose?
⇒ application-specific hardware

We will focus on general-purpose computers in this course, but later
courses explore a variety of ways computers are optimized.

17

Historical Trends

18

How far have we come?

Cray-1 Supercomputer (1975)

• 80 MHz
• 250 MFLOPS (108)
• 115 KW
• $8.86 Million

AMD Radeon RX 5600 (2020)

• 1560 MHz
• 6,390 GFLOPS (1012)
• 150 W
• $300

19

Introduction

Classes of Computers
Textbook§1.1

Notation

Bit vs. Byte
b = bit
B = byte (= 8 bits)

Term Abbreviation Approx. value Actual value

byte B 100 20
kilobyte KB 103 210
megabyte MB 106 220
gigabyte GB 109 230
terabyte TB 1012 240
petabyte PB 1015 250
exabyte EB 1018 260
zettabyte ZB 1021 270
yottabyte YB 1024 280

In practice, the “powers of two values” are used.
The exception is storage, e.g., 1TB = 1012 bytes < 240bytes.
In this course, we will use “powers of two values” for everything.

20

Servers

• Servers are computers used for running large programs for
multiple users, typically accessed only via a network.

• Price: $5,000 – $2M

21

Cloud Computing

• 10-100K of servers
• Housed in large data centers

source: By Hugovanmeijeren - Own work, CC BY-SA 3.0

CERN Data Center (2010)
1
8
0
m

110m

source: Google Maps

Google Data Center, Pryor, Oklahoma

22

https://commons.wikimedia.org/w/index.php?curid=10282772

Personal Computers (PC)

• Price range $300 – $4000
• Runs a large variety of different software applications

PC Example: Desktop

source: By Veradrive - Own work, CC BY 4.0

IBM XT, 1983

CPU: Intel 8088 @ 4.77 MHz
Memory: 640 KB RAM

source: By Jeremy Banks - originally posted to Flickr as New Computers, CC BY 2.0

Dell PC, 2007

CPU: Intel Core 2 Quad @ 3.33 GHz
Memory: 8 GB RAM

23

https://en.wikipedia.org/w/index.php?curid=53761086
https://commons.wikimedia.org/w/index.php?curid=4174558

Personal Computers (PC)

PC Example: Laptop

source: By https://es.ifixit.com/User/524640/Sam+Lionheart - https://d3nevzfk7ii3be.cloudfront.net/igi/gFgosPJbspyCBD5P, CC BY-SA 3.0

MacBook Air 2008

• CPU: Intel Core 2 Duo with 4 MB on-chip L2 cache @ 1.8 GHz
• Memory: 2 GB of 667 MHz DDR2 SDRAM
• Storage: 64 GB SSD
• Input/Output (I/O) devices: keyboard, touchpad, screen, mic,
speakers, USB port, WiFi/Ethernet

24

https://commons.wikimedia.org/w/index.php?curid=41473740

PMD: Personal Mobile Device

• Price: $100 – $1000
• All the elements of a computer are there: touchscreen, virtual
keyboard, WiFi, processors, memory, storage

• The majority of these devices use ARM processors
⇒ energy-efficient processors (2 W)

source: By Carl Berkeley from Riverside California - iPhone First Generation 8GBUploaded by Partyzan_XXI, CC BY-SA 2.0

First iPhone, 2007

source: By matt buchanan - , CC BY 2.0

First iPad, 2010

25

https://commons.wikimedia.org/w/index.php?curid=8182161
https://www.flickr.com/photos/40134069@N07/4310699758/

Embedded Computers

A computer inside another device
Often referred to as an embedded system

• 98% of all processors are in embedded systems
• Users do not necessarily realize they are
interacting with a computer

• E.g., there are 25-50 processors in a typical car
• Engine management
• Entertainment
• Safety systems
(ABS, traction control, pedestrian detection)

• Telemetry (e.g., automatic roadside assistance)
• Input: sensors (e.g., accelerometer)
output: mechanical control source: https://www.lg.com/

26

https://www.lg.com/

Internet of Things (IoT)

• Embedded systems
• Connected to other devices

source: thenewstack.io

Arduino - Rasberry Pi IoT nodes

E.g., wearable devices

source: www.ept.ca

27

https://thenewstack.io/tutorial-prototyping-a-sensor-node-and-iot-gateway-with-arduino-and-raspberry-pi-part-1/
https://www.ept.ca/features/speed-development-wearable-devices-solid-targeted-platform/

Consumer Devices Market Penetration

source: https://www.economist.com/business/2016/09/10/still-ringing-bells

Internally, all these computers are
organized using the same
concepts:
• Instruction Set Architecture
• System Software (assembler,
compilers, operating system)

• I/O (Input/Output)
• Memory
• Processor

28

https://www.economist.com/business/2016/09/10/still-ringing-bells

Introduction

Under the Hood

What’s under the hood?

source: www.ifixit.com

iPad Air LTE Teardown
29

https://www.ifixit.com/Teardown/iPad+Air+LTE+Teardown/18907

Main Board (“Mother” Board)

source: www.ifixit.com

iPad Air LTE board

Apple A7 Processor - dual-core ARMv8-A processor

Elpida 1 GB LPDDR3 SDRAM memory

Toshiba 16 GB NAND Flash storage

NXP LPC18A1 (Apple M7 Motion Co-Processor) ARM Cortex-M3 core

Dialog Power Management IC

USI 339S0213 Wi-Fi Module 30

https://www.ifixit.com/Teardown/iPad+Air+LTE+Teardown/18907

Processor

The processor is where all computations happen, where data is
processed.

source: https://www.flickr.com/photos/dcoetzee/8694597164/ CC0 1.0

RISC V prototype chip, 2013

Components
• Processor die: a single
piece of
semiconductor
(silicon); does the work

• Processor package:
plastic/ceramic
housing with gold pin
contacts; I/O, and heat
removal

31

https://www.flickr.com/photos/dcoetzee/8694597164/

Memory

Memory is where the program, and the data it processes, are
temporarily stored.

source: Utente:Sassospicco / CC BY-SA 2.5

1 GB RAM module

Memory is often volatile: when power is off, the data is lost.
32

https://commons.wikimedia.org/wiki/File:RAM_module_SDRAM_1GiB.jpg

Storage

Storage is where programs and data are stored for the long-term.

source: Evan-Amos / CC BY-SA 3.0

500GB WD hard disk drive (HDD)
2.5-inch (6cm × 1cm × 10cm)
CAD $65 (Aug. 2020)

source: https://www.newegg.ca

512GB Samsung solid state drive (SSD)
(22mm × 2mm × 80mm)
CAD $240 (Aug. 2020)

An SSD is also referred to as non-volatile memory (NVM).
33

https://commons.wikimedia.org/wiki/File:Laptop-hard-drive-exposed.jpg
https://www.newegg.ca

I/O Devices

I/O is used to exchange data with humans or other machines.

source: https://commons.wikimedia.org/wiki/File:Computer_keyboard_US.svg Public domain

Computer keyboard

source: https://en.wikipedia.org/wiki/Computer_mouse#/media/File:Sega-Dreamcast-Mouse-BL.jpg

Computer mouse

source: https://www.dell.ca

Computer screen

What are other examples of common I/O devices? 34

https://commons.wikimedia.org/wiki/File:Computer_keyboard_US.svg
https://en.wikipedia.org/wiki/Computer_mouse#/media/File:Sega-Dreamcast-Mouse-BL.jpg
https://www.dell.ca

Basic Abstractions
Textbook§1.5

What can a computer do?

It can move data in and out of variables:

country = ” Canada ” ;
b = a ;

It can operate on data:

b = a * 1 2 ;
course = ” Computer ” + ” Organizat ion ” ;

It can decide what to do next based on a condition:

i f (b < 0)
c = c + 1 ;

else
c = c − 1 ;

35

Have you ever wondered how the machine executes more complex
code such as:

for (i n t i =0 ; i < 1 0 ; i ++) {
p r i n t f (” The value of i i s : %d” , i) ;

}

High-level languages such as C or Java provide a convenient
abstraction that makes programs:

• easy to code (usability)
• easy to understand (readability)
• easy to re-use (reusability)
• easy to re-target to different machines (portability)

36

How is data represented?

• All data is represented internally as binary numbers in the
machine.
E.g., the number 3 is represented as 0000 0011.

• Text can be represented by a code that assigns each text
character a number.
E.g., the ASCII code for the character “C” is 67, which is
represented as 0100 0011.

Remember: this too is an abstraction. Binary numbers are just a
convenient way of representing voltages across capacitors.

37

How about images?

• Images are 2D arrays of
picture elements (pixels)

• Each pixel is represented
by a set of numbers
indicating the intensity of
colors such as red, green
and blue.

4 bytes RGBA format
(Red,Green,Blue,Alpha)
(255,0,0,255)

38

Sound

Sound can also be represented by:

• collections of numbers representing the magnitude of audio
signals sampled at regular time intervals, or

• collections of numbers describing the frequency content of the
signal.

39

Hardware

To process data, a computer uses digital circuits.

In ECSE 222 (Digital Logic), you learned all the basic digital circuit
building blocks that you need to make a computer:

• Logical functions
E.g., AND, OR, NOT, XOR

• Binary arithmetic functions
E.g., Addition, shifting

• Memory
E.g., Flip-flops (registers)

40

Computers are Sequential Digital Machines

Computers process sequences of input data to compute sequences
of output data.

Order matters!

This notion of time means that a computer must be a sequential
circuit. Therefore it must have:

• A clock to synchronize different computer component’s
operations, and

• Memory to store past results.

All computers have memory. Not all computers have clocks; most do!

41

Computer Programs are Sequences of Simple Operations

A program written in a high-level language must be translated to a
program that consists only of the simple operations that the
computer hardware can actually perform:

Reading from memory, operating on data with logical and arithmetic
functions, and writing to memory.

A programming language consisting of these simple operations is
called machine language.

A machine language program is made up of a list of statements
called instructions.

42

Machine and Assembly Language

Instructions are simple operations
implemented with digital logic.

Even the most complex tasks (a
self-driving car, Siri, a 3D game) are
executed by programs consisting of
simple instructions.

Instruction = Data
An instruction is represented by a
number, just like data.

This is a fundamental concept:
both data and instructions are
represented by binary numbers;
both are stored in memories.

1:many mapping

1:1 mapping

43

Where are the instructions stored?

There are two types of general-purpose
architectures:
• Harvard architecture (1944)
Instructions and data are stored in separate
memories.

• Von Neumann architecture (1945)
Instructions and data are stored in the same
memory. John von Neumann

(1903-1957)

Today, most computers use the von Neumann architecture, at least
as far as software is concerned.

Internally (invisible to software), Harvard architecture is almost
always used, for performance reasons.

44

Binary Integer Arithmetic (Recap)
Textbook§1.4, 1.5

Unsigned Integers

Decimal number D = dn−1dn−2 . . .d1d0 where di ∈ {0,1, . . . ,9}
Value in base 10 V(D) =

∑N−1
i=0 di × 10i

e.g., 67 = 6 ∗ 101 + 7 ∗ 100 = 67

Binary number B = bn−1bn−2 . . .b1b0 where bi ∈ {0,1}
Value in base 10 V(D) =

∑N−1
i=0 di × 2i

e.g., 0100 0011 = 1× 26 + 1× 21 + 1× 20 = 67

E.g., 6710 = 0100 00112
E.g., 1310 = 0000 11012

The range of values depends on number of bits n: V(D) ∈ [0;2n − 1].

E.g., if n = 8 bits, the maximum value is
28 − 1 = 25510 = 1111 11112.

45

Binary Addition

Decimal addition

67
+ 13

1
80

Binary addition

0100 0011
+ 0000 1101

010
1
1

1
0
1
0
1
00

Watch out for overflow!

195
+ 141

1
336

1100 0011
+ 1000 1101

1
010

1
1

1
0
1
0
1
00

336 is larger than the maximum value (255) we can represent with 8
bits. The carry-out indicates the overflow.

46

Binary Addition in Hardware

Ripple carry adder: S = A+ B

1-bit
Full

Adder

1-bit
Full

Adder

1-bit
Full

Adder

1-bit
Full

AdderC3 C2 C1 C0C4

A3 B3 A2 B2 A1 B1 A0 B0

S3 S2 S1 S0

source: https://commons.wikimedia.org/wiki/File:4-bit_ripple_carry_adder.svg en:User:Cburnett / CC BY-SA

47

https://commons.wikimedia.org/wiki/File:4-bit_ripple_carry_adder.svg

Signed Integers: Sign-and-magnitude Representation

We need to encode the sign in the representation of signed binary
numbers.

Sign-and-magnitude is the simplest approach: use the leftmost bit
(MSB) to represent the sign, and the remaining bits to represent the
magnitude (i.e., absolute value). Example for 8 bits:

MSB = 0⇒ positive
MSB = 1⇒ negative

+ 13 = 00001101
− 13 = 10001101

Problems with sign-and-magnitude:

• Two representations for zero = 0000 0000 = 1000 0000
• We need extra hardware to handle the addition of a positive
number and a negative one (we cannot simply add the numbers
together)

48

Signed Integers: 1’s-complement Representation

To get a negative value: invert each bit of the corresponding positive
representation, and vice-versa.

This representation has the advantage that signed and unsigned
arithmetic can use the same hardware.

+ 13 = 00001101
− 13 = 11110010

0001 0000 = (1610)
+ 1111 0010 = (−1310)

1 1
0
1
0
1
00 0010 = (210)

This result is off by one;
carry out, but no overflow.

49

Overflow
Overflow occurs when the result of an arithmetic operation does
not fit into the range of the n-bit representation used, e.g.,
[−2n−1,2n−1 − 1] when a bit is used to represent the sign.

If there is a carry out during unsigned arithmetic, overflow has
occurred.

0001 0000 = (1610)
+ 1111 0010 = (24210)

1 1
0
1
0
1
00 0010 = (210)

Here, the result is off by 256; the carry out (28) indicates overflow.

In signed arithmetic, overflow must be detected differently.

50

Back to 1’s-complement Representation

+ 13 = 00001101
− 13 = 11110010

0001 0000 = (1610)
+ 1111 0010 = (−1310)

1 1
0
1
0
1
00 0010 = (210)

This result is off by one;
carry out, but no overflow.

Problems:

• Still two representations for zero = 0000 0000 = 1111 1111
• Need to add 1 to the result when an operand is negative (try as
an exercise with (−2)10 + (−2)10)

• Need a way to identify overflow

51

Signed Integers: 2’s-complement Representation

For integer arithmetic, computers use 2’s-complement
representations.

To get a negative value: invert each bit of the corresponding positive
representation and add one (works in reverse as well).

+ 13 = 0000 1101
− 13 = 1111 0010+ 1

= 1111 0011

0001 0000 = (1610)
+ 1111 0011 = (−1310)

1 1
0
1
0
1
00 0011 = (310)

Correct value; however, carry
out without actual overflow
again!

Problem:

• Still need a way to identify overflow

52

Overflow in 2’s Complement Addition

Recall that overflow occurs when the answer does not fit into the
representable range of numbers.

Observations:

• With signed addition, the carry-out does not indicate overflow.
• Overflow can only happen if both numbers have the same sign.

Rule: Overflow only occurs if both summands have the same sign,
and the sum has a different sign than that of the summands.

0110 = (+610)
+ 0100 = (+410)

1010 = (+1010)

No carry out, different sign
⇒ overflow!

1110 = (−210)
+ 1001 = (−710)

1
0111 = (910)

Carry out, different sign
⇒ overflow!

53

Ranges

Integer representations, assuming n = 4 bits:
Binary Decimal Value

Sign and Magnitude 1’s Complement 2’s Complement

1000 -0 -7 -8
1001 -1 -6 -7
1010 -2 -5 -6
1011 -3 -4 -5
1100 -4 -3 -4
1101 -5 -2 -3
1110 -6 -1 -2
1111 -7 -0 -1

0000 +0 +0 +0
0001 +1 +1 +1
0010 +2 +2 +2
0011 +3 +3 +3
0100 +4 +4 +4
0101 +5 +5 +5
0110 +6 +6 +6
0111 +7 +7 +7

Range: [−7; +7] [−7; +7] [−8; +7]
[−2n−1 − 1;2n−1 − 1] [−2n−1 − 1;2n−1 − 1] [−2n−1;2n−1 − 1]

54

Subtraction

B−A = B+(−A) : form the 2’s complement inverse of A and add to B.

In hardware, invert the bits and add one using the carry in signal C0.
The signal D selects between addition and subtraction.

1-bit
Full

Adder

1-bit
Full

Adder

1-bit
Full

Adder

1-bit
Full

AdderC3 C2 C1 C0C4

A3 B3 A2 B2 A1 B1 A0 B0

S3 S2 S1 S0

1 0 1 0 1 0 1 0

D

source: https://commons.wikimedia.org/wiki/File:4-bit_ripple_carry_adder-subtracter.svg en:User:Cburnett / CC BY-SA

55

https://commons.wikimedia.org/wiki/File:4-bit_ripple_carry_adder-subtracter.svg

Sign Extension

Sometimes you will want to convert an n-bit number to an m-bit
number, where m > n.

The rule for 2’s complement numbers is to replicate (extend) the sign
bit.

4-bit value 8-bit value
0010 0000 0010 = (210)
1110 1111 1110 = (−210)

Sign-extension is important if (when) we store numbers in memory
using fewer bits than our processor uses for its operations.
E.g., we may use 8-bit numbers for color or sound, but do math on
such numbers using a 32-bit adder.

56

Hexadecimal Representation

• Binary can be very unwieldy when
representing large values:
774810 = 00011110010001002

• We can use the base-16 hexadecimal
(hex) representation. Each hex digit
has 16 = 24 possible values and
represents 4 bits.

• We can write the above binary
number more compactly in base-16
as 1E44h.

• Get good at converting back and
forth between bin, hex, and dec!

Decimal Binary Hex

0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

57

Basic Computer Organization
Textbook§1.2, 1.3, 2.1, 2.2

Computer System Components

Main memory

Interconnection
network

External
devices

Input

Output

bus

Processor

Control

Datapath

Processor

• CPU (Central Processing Unit)
• This course: only single core

External devices

• I/O (Input/Output)
• E.g., keyboard, HDD, display

Main memory

• RAM (Random Access
Memory)

• Stores program and data

Interconnection network

• Communication medium
• Uses shared buses

58

Basic Computer Organization
Textbook§1.2, 1.3, 2.1, 2.2

Memory

Main memory

Usually, data in a program resides in main memory. Conceptually
(i.e., in software’s view), each variable is allocated in main memory.

i n t z = 4 2 ; // 32 b i t s = 4 bytes (ARMv7−A)
short s = 1 1 ; // 16 b i t s = 2 bytes (ARMv7−A)
char c = 30 ; // 8 b i t s = 1 byte in C (16 b i t s in Java)

i n t ar r [1 0] ; // 10*4 bytes = 40 bytes (ARMv7−A)

59

Memory Addresses and Content

0 1 2 3 4

5 6 7 8 9

address
content

• Computer memory is
organized as a linear array of
bytes.

• Each byte in the memory has
its own unique address
(“byte-addressable”).

• The processor can read or
write the content (byte
value) of the memory at a
given address.

60

Address Space

Addresses are represented using k bits = address size.

There are 2k addressable locations in the address space of the
computer, numbered from 0 to 2k − 1.

E.g., a 32-bit address space has 232 = 230 · 22 = 4G addresses.

Since each address corresponds to a location that stores a byte, the
capacity of the memory is 4 GB (GigaBytes) for a 32-bit address space.

How many for a 24-bit address space?

61

Accessing Multiple Bytes

Most computers process data in chunks of several bytes: a word.

• A typical word size or word length is 32 bits (4 bytes).
• The word size and address size of a computer are often equal.

The memory has a mechanism to read or write multiple consecutive
bytes with a single request instead of having to access bytes
individually multiple times.

Data can be accessed (read or written) in chunks of multiple bytes by
giving the address of the starting byte and the size of the chunk,
usually one byte, 2 bytes (half word), or 4 bytes (word).

62

Example: Accessing Multiple Bytes

Read the word stored starting at address 0x4.

valueaddress
0xD1
0x4B
0x45
0xC4
0x90
0x12
0x4F
0xEE
0x78
0x91
0x03
0x70
0xB3
0xDA
0x7F
0xE6

0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0A
0x0B
0x0C
0x0D
0x0E
0x0F

valueaddress
0xD1
0x4B
0x45
0xC4
0x90
0x12
0x4F
0xEE
0x78
0x91
0x03
0x70
0xB3
0xDA
0x7F
0xE6

0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0A
0x0B
0x0C
0x0D
0x0E
0x0F

Read(0x04) = 0x 90 12 4F EE? or 0x EE 4F 12 90?

It depends on byte ordering.

63

Byte Ordering (Endianness)

0x90 0x12 0x4F 0xEE

0x04 0x05 0x06 0x07
value

address

Big Endian: starts with the Most Significant Byte (Big byte).
E.g., Read(0x04) = 0x 90 12 4F EE

Little Endian : starts with the Least Significant Byte (Little byte).
E.g., Read(0x04) = 0x EE 4F 12 90

Origin of the name

Gulliver’s Travels, 1726
(Jonathan Swift).

64

Why Little-Endian?

One of the reasons: consider the ripple carry adder:

1-bit
Full

Adder

1-bit
Full

Adder

1-bit
Full

Adder

1-bit
Full

AdderC3 C2 C1 C0C4

A3 B3 A2 B2 A1 B1 A0 B0

S3 S2 S1 S0

The carry chain starts with the least significant bit. When the first
byte-addressable micro-controllers and processors appeared,
little-endian ordering made addition more efficient: increment
addresses by 1 and feed the values into the adder from the least
significant byte to the most significant one.

65

Alignment

Some computers require memory accesses to start on an address
that is a multiple of the chunk size in bytes:

• 32-bit words can only be accessed at address 0, 4, 8,...
• 16-bit half-words can only be accessed at address 0, 2, 4, 6, ...
• Bytes can be accessed at any address 0, 1, 2, 3, ...

There are multiple reasons for this, mostly due to the way the
processor and memory sub-system are implemented.

An access at address addr to data of size sze is aligned if and only if:

addr mod sze = 0

ARMv7-A supports unaligned accesses, but such accesses may be
slower than aligned accesses.

66

Alignment

32-bit word (4-byte)
alignment

valueaddress
0xD1
0x4B
0x45
0xC4
0x90
0x12
0x4F
0xEE
0x78
0x91
0x03
0x70
0xB3
0xDA
0x7F
0xE6

0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0A
0x0B
0x0C
0x0D
0x0E
0x0F

16-bit half-word (2-byte)
alignment

valueaddress
0xD1
0x4B
0x45
0xC4
0x90
0x12
0x4F
0xEE
0x78
0x91
0x03
0x70
0xB3
0xDA
0x7F
0xE6

0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0A
0x0B
0x0C
0x0D
0x0E
0x0F

67

Basic Computer Organization
Textbook§1.2, 1.3, 2.1, 2.2

Processor

Processor Overview

Memory
(including I/O)

Processor (CPU)

Control

Datapath

Processor-memory
interface

• From the processor point’s of view, everything
outside is memory (including I/O).

• The processor interacts with the outside world
through a memory interface.

68

Processor Overview

Memory
(including I/O)

Processor (CPU)

Control

Datapath

Processor-memory
interface

CPU’s Control Logic

• The control logic coordinates the execution of the
instructions in the datapath

• Mainly sequential logic consisting of finite state
machines

CPU’s Datapath Logic

• The datapath is driven by the control logic and
processes data accordingly

• Mainly combinational logic (with the exception of
temporary storage) implementing instructions

69

Processor Datapath

CPU

Control

Processor-memory
interface

Memory

Datapath

ALURegister
File

Arithmetic and Logic Unit (ALU)

• Performs operations on data
• E.g., add, multiply, shift, and
• Also used to generate
addresses for memory
accesses

Register File

• A small number of
general-purpose registers
used as fast temporary data
storage

70

Load/Store Architecture

ALURegister
File

Memory

storeload

Datapath

Load/Store architecture
Load and store are the only instructions that
are allowed to access memory.

• The ALU only∗ reads its input data and
writes its result from/to registers
⇒ simplifies the design of the hardware

• Use special load and store instructions for
transfers between registers and memory

∗ The ALU assists with memory accesses by
calculating addresses.

71

CISC vs RISC architecture

CISC = Complex Instruction Set Computer (e.g., x86)

• Instructions can be complex (e.g., reciprocal of square root)
• Instructions can access both memory and registers (e.g., add)
• Leads to more complex CPU design
• From the days before good compilers were available

RISC = Reduced Instruction Set Computer (e.g., ARM)

• Simpler CPU design simplifies performance improvement
• Load/store architecture
• Simple arithmetic operations
• Focus of this course

72

RISC Operations
Textbook§2.3

Register Transfer Notation (RTN)

RTN allows us to specify the semantics of an instruction. Some
common notation:

• Rn : content of register n
• XX : content of a specific named register, e.g., IR or PC
• Mem[a] : content of memory at address a
• ← : transfer (copy).

Note: the number of bits on both sides of the arrow should be equal!

Instruction set architecture documentation, which describes the
operations (i.e., software interface) of a computer, specify such
operations in RTN.

73

Memory Instructions

Memory Load
Load R2, ADDRESS

Load reads (copies) four consecutive bytes (a word) from the
memory starting at memory address ADDRESS and writes them as a
word into register R2.

RTN: R2 ← Mem[ADDRESS]

Memory Store
Store R4, ADDRESS

Store copies the word stored in register R4 into four consecutive
bytes in memory starting from address ADDRESS.

RTN: Mem[ADDRESS] ← R4
74

ALU Instructions

E.g., Addition
Add R4, R2, R3

Add adds the contents of registers R2 and R3 and places their sum
into register R4. The operands in R2 and R3 are not altered but the
previous value in R4 is overwritten.

RTN: R4 ← R2 + R3

75

Sequence of Instructions

Consider a C program where a, b, c each occupy 4 bytes in memory:
i n t a = 1 ;
i n t b = 3 ;
i n t c = 7 ;
c = a+b ;

The equivalent sequence of assembly instructions is:
Load R2, A
Load R3, B
Add R4, R2, R3
Store R4, C

where A, B, and C are the addresses where the variables are stored.

Running a program
When running the program, the machine executes each instruction
sequentially, one after another (or at least appears to do so).

76

Program instructions and data are both stored in memory

• Instructions are just like data, and
are stored in memory

• On a typical RISC machine, all
instructions are the same length
(e.g., 4 bytes)

• Instructions are stored in
consecutive memory addresses:
e.g., 0x00, 0x04, 0x08, 0x0C

ContentAddress
Load R2, A0x00
Load R3, B0x04

Add R4, R2, R30x08
Store R4, C0x0C

...

a’s data(A) 0x30
...

b’s data(B) 0x3C
...

c’s data(C) 0x48
...

Exercise
Given the following initial values: a=1, b=3 and c=7,
what are the memory and register contents after each instruction?

77

Program Counter and Instruction Register

Memory

ALURegister
File

CPU

IR

PC

Program Counter (PC)
Holds the address of the current
instruction

Instruction Register (IR)
Holds the current instruction to execute

• First, the processor loads (fetches) the
instruction pointed to by the PC from
memory and stores it in the IR.

• The instruction in the IR is then
decoded, and the processor executes it.

• Finally, the PC is updated; usually PC is
incremented by the instruction size.

78

Executing Instructions, Step by Step

...

0xe5902030 (Load R2, A)0x00

0xe590303c (Load R3, B)0x04

0xe0824003 (Add R4, R2, R3)0x08

0xe5804048 (Store R4, C)0x0C

...

0x00000001 (a’s data)0x30

...

0x00000003 (b’s data)0x3C

...

0x00000007 (c’s data)

0x00000004 (c’s data)0x48

...

Registers
PC 0x000000000x000000040x000000040x000000080x000000080x0000000C0x0000000C
IR ?0xe59020300xe59020300xe590303c0xe590303c0xe08240030xe08240030xe58040480xe5804048
R2 ?0x000000010x00000001
R3 ?0x000000030x00000003
R4 ?0x000000040x00000004

1. PC ⇐ 0x00000000

2. fetch: IR ⇐ MEM[PC] = 0xe5902030

3. decode: Load R2, A
4. execute: R2 ⇐ MEM[A] = 0x00000001

5. PC ⇐ PC+4 = 0x00000004

6. fetch: IR ⇐ MEM[PC] = 0xe590303c

7. decode: Load R3, B
8. execute: R3 ⇐ MEM[B] = 0x00000003

9. PC ⇐ PC+4 = 0x00000008

10. fetch: IR ⇐ MEM[PC] = 0xe0824003

11. decode: Add R4, R2, R3
12. execute: R4 ⇐ R2+R3 = 0x00000004

13. PC ⇐ PC+4 = 0x0000000C

14. fetch: IR ⇐ MEM[PC] = 0xe5804048

15. decode: Store R4, C
16. execute: MEM[C] ⇐ R4 = 0x00000004

79

Branching

What if we want to change what
code we execute based on
program conditions?

i f (a >0)
b = 7 ;

else
b = 1 3 ;

The machine usually increments the PC by 4 after each instruction.
We need a generic mechanism to change the PC.

Branch Instructions

• Conditional branch:
Changes the PC to a specific address if a condition is true.

• Unconditional branch:
Always changes the PC to a specific address.

80

C code

i f (a >0)
b = 7 ;

else
b = 1 3 ;

Assembly code

Address Instruction Comment
0x00: Load R1, A // load a from MEM[A] into R1
0x04: BLE R1, 0x10 // if R1<=0, branch to address 0x10
0x08: Move R2, #7 // R2 = 7
0x0c: Br 0x14 // branch to address 0x14
0x10: Move R2, #13 // R2 = 13
0x14: Store R2, B // store R2 into MEM[B] (location of b)

• Br = Branch
• BLE = Branch if Lesser or Equal (to zero)
(Other variants: BEQ, BNE, BLT, BGT, BLE, BGE)

81

Assembly Labels

Using explicit addresses is cumbersome when writing assembly.

• Addresses of instructions are likely to change when editing a
program!

Solution: use assembly labels which associate an address with a
name.
Label Instruction Comment

Load R1, A // load a from MEM[A] into R1
BLE R1, ELSE // if R1<=0, branch to ELSE
Move R2, #7 // R2 = 7
Br END // branch to END

ELSE: Move R2, #13 // R2 = 13
END: Store R2, B // store R2 into MEM[B] (location of b)

Assuming the first instruction is at address 0x00:

• ELSE = 0x10
• END = 0x14

82

Loops

How does the machine execute
loops?

i n t sum = 0 ;
i n t i = 0 ;
while (i −10 < 0) {
sum = sum+ i ;
i = i + 1 ;

}

Again, use branch instructions:

Move R2, #0 // sum=0
Move R1, #0 // i=0

LOOP: Sub R3, R1, #10 // R3=i-10
BGE R3, END // if (i-10>=0) branch to END
Add R2, R2, R1 // sum = sum+i
Add R1, R1, #1 // i = i+1
Br LOOP // branch back to LOOP

END: Store R1, I // store i in memory
Store R2, Sum // store sum in memory

83

More Loops and Conditions

• What about other loop
constructs?

• What about other conditions?

i n t sum = 0 ;
for (i n t i =0 ; i < 1 0 ; i ++)
sum = sum+ i ;

Convert to known constructs/comparisons:

• turn loops into equivalent while loops
• turn conditions into comparison with zero

Equivalent while loop with comparison with zero:
i n t sum = 0 ;
i n t i = 0 ;
while (i −10 < 0) {
sum = sum+ i ;
i = i + 1 ;

}

84

Conclusion

This set of lectures has:

• Introduced computers and their history
• Looked at basic abstractions (e.g., data, instructions)
• Reviewed integer arithmetic
• Looked at the memory and processor abstractions
• Introduced basic RISC operations

The next set will:

• Present a real processor instruction set (ARMv7)
• Show how to write real assembly programs in more detail

85

	Introduction
	A brief history of computer technology Textbook§1.6, 1.7
	Classes of Computers Textbook§1.1
	Under the Hood

	Basic Abstractions Textbook§1.5
	Binary Integer Arithmetic (Recap) Textbook§1.4, 1.5
	Basic Computer Organization Textbook§1.2, 1.3, 2.1, 2.2
	Memory
	Processor

	RISC Operations Textbook§2.3

