ECSE324: Computer Organization

Arithmetic Chapter 9

Christophe Dubach Fall 2022

Revision history:

Warren Gross - 2017

Christophe Dubach - W2020, F2020, F2021, F2022

Brett H. Meyer - W2021, W2022

Some material from Hamacher, Vranesic, Zaky, and Manjikian, Computer Organization and Embedded Systems, 6 th ed, 2012.

Timestamp: 2022/11/22 10:22:00

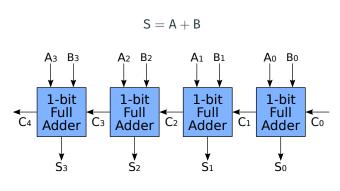
Disclaimer

It is possible (and even likely) that I will (sometimes) make mistakes and give incorrect information during the live lectures. If you have any doubts, please check the textbook, or ask for clarification online.

Addition and Subtraction

Textbook§9.1, 9.2

Ripple Carry Adder (Recap)

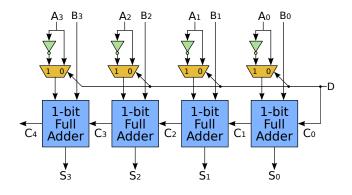


source: https://commons.wikimedia.org/wiki/File:4-bit_ripple_carry_adder.svg en:User:Cburnett / CC BY-SA

Addition/Subtraction in Hardware (Recap)

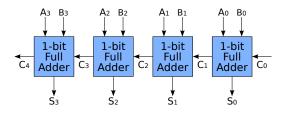
Form 2's complement of A and add to B: B - A = B + (-A).

In hardware, invert the bits and add one using carry-in C_{θ} . D selects between addition and subtraction.



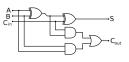
 $source: https://commons.wikimedia.org/wiki/File: 4-bit_ripple_carry_adder-subtracter.svg en User. Churnett / CC BY-SA and Commons and CC BY-SA and$

Addition/Subtraction in Hardware (Recap)



://commons.wikimedia.org/wiki/File:4-bit ripple carry adder.svgenUserCburnett/CCBY-S/

Full adder gates:



The MSB bit (S₃) depends on having computed the carry of each preceding bits (at least a delay of two gates between carries).

The delay for the last carry bit is proportional to the total number of bits involved in the addition!

In the case of 32-bit (or 64-bit) integers, this leads to significant delay.

Can we re-organize the circuit to control how delay grows? (Yes.)

Carry Propagation and Generation

The addition of two digits generates if it always produce a carry

• E.g., 58 + 71: 5 + 7 generates, but 8 + 1 does not.

Definition

For binary addition, A_i+B_i generates if and only if both A_i and B_i are 1. $G_i=A_i\cdot B_i$ (= A_i AND B_i)

The addition of two digits propagates if it is carried *only when* there is an input carry

• *E.g.*, 53 + 41: 5 + 4 propagates, but 3 + 1 does not.

Definition

For binary addition, A_i+B_i propagates if and only if one of A_i or B_i is 1. $P_i=A_i+B_i$ (= A_i OR B_i)

Ai	$B_\mathtt{i}$	C_{i}	C_{i+1}	Carry Type
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	1	Propagate
1	0	0	0	
1	0	1	1	Propagate
1	1	0	1	Generate
1	1	1	1	Propagate & Generate

The addition of two bits produces a carry only when it *generates* or when there is a carry in and it *propagates*.

In Boolean algebra:

$$C_{i+1} = G_i + P_iC_i$$
, where
$$G_i = A_iB_i$$

$$P_i = A_i + B_i$$

Carry-lookahead Addition

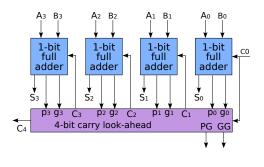
We can use carry propagation and generation to break the dependence of C_i on C_{i-1} ($i \neq 1$), reducing delay. In the case of a four bit adder, we have:

$$\begin{split} &C_1 = G_0 + C_0 P_0 \\ &C_2 = G_1 + G_0 P_1 + C_0 P_0 P_1 \\ &C_3 = G_2 + G_1 P_2 + G_0 P_1 P_2 + C_0 P_0 P_1 P_2 \\ &C_4 = G_3 + G_2 P_3 + G_1 P_2 P_3 + G_0 P_1 P_2 P_3 + C_0 P_0 P_1 P_2 P_3 \end{split}$$

The delay for G_i and P_i is one gate each. The delay for C_i is therefore only three gates, assuming we can have more than two inputs per AND/OR gate, and fan-out is not a problem.

Carry-lookahead Adder

We can build a 16-bit carry-lookahead adder out of four 4-bit adders.



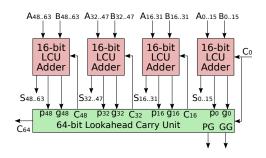
source https://en.wikipedia.org/wiki/File:4-bit carry lookahead adder.sygen.UserChumett/CCBY-S/

- PG = Group Propagate = $P_0P_1P_2P_3$
- • GG = Group Generate = $G_3 + G_2P_3 + G_1P_3P_2 + G_0P_3P_2P_1$

 P_i,G_i only depend on $A_i,B_i\Rightarrow$ logic delay of PG and GG is independent of the number of bits.

Multi-level Carry-Lookahead Adder

Carry-lookahead adders can be combined to make larger adders, *e.g.*, four 16-bit adders make a 64-bit adder.

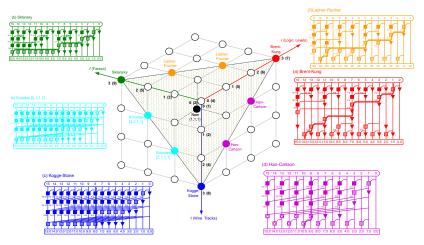


 $source: https://commons.wikimedia.org/wiki/File: 64-bit_lookahead_carry_unit.svg en liser. Churrett / CC BY-SA to be a substant of the subst$

The 4-bit group circuit is the same here before!

More than two ways to add two numbers

There are lots of ways to add two numbers; the different options strike complex trade-offs between cost and delay.



Multiplication

Textbook§9.3

Multiplication as Sum of Partial Products

Decimal multiplication

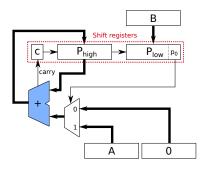
Binary multiplication

$$\begin{array}{c|cccc}
 & 1011 & (11) \\
 \times & 1101 & (13) \\
\hline
 & 1011 & \\
 & 0000 & \\
 & 1011 & \\
 + & 1011 & \\
\hline
 & 10001111 & (143)
\end{array}$$

Sequential Multiplication: Shift and Add Multiplier

Multiplication in binary is equivalent to a series of shifts and additions.

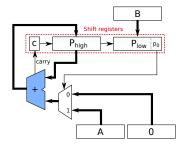
- · Inputs: Multiplicand A, Multiplier B, n bits wide
- Output: Product $P = A \times B$, $2 \times n$ bits wide



Sequential Control Algorithm:

- Initialize P_{high} with zero and P_{low} with B
- 2. Update P and C with the result of addition
- 3. Shift C, P and B right by 1
- 4. Repeat steps 2–3, n-1 times

Requires **n** clock cycles to compute result; only used by low-cost CPUs.



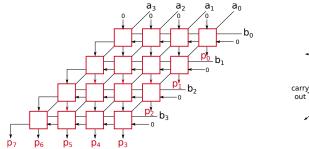
Example: $A = 1011_2 = 11_{10}$, $B = 1101_2 = 13_{10}$

Action	С	P _{high}	P _{low}	p ₀
init	?	0000	1101	1
update	0	1011	1101	1
shift	?	0101	1110	0
update	0	0101	1110	0
shift	?	0010	1111	1
update	0	1101	1111	1
shift	?	0110	1111	1
update	1	0001	1111	1
shift	?	1000	1111	1

Combinational Multiplication: Array Multiplier

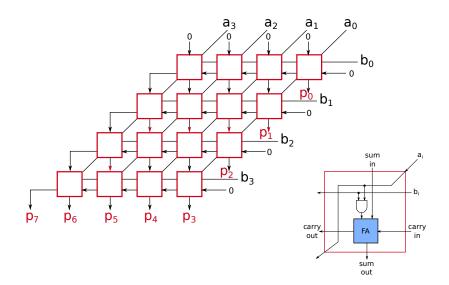
Instead of computing in time, we can compute in space using a *systolic array* of adder cells.

- \cdot **b**_i controls whether **a**_i is added or not
- · partial sum propagates downwards

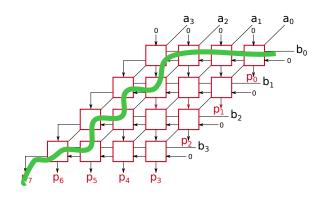




Much faster than shift-and-add multiplication at the cost of Si area.



Max delay: $n + 2 \cdot (n - 1) = 3 \cdot n - 2 \approx 3 \cdot n$



Fast Multiplication

Textbook§9.5

Carry-save Addition

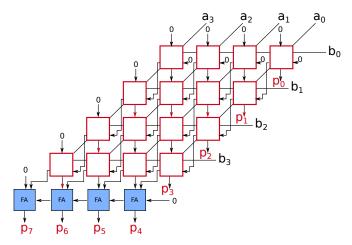
- When summing multiple values, can save the carry and add it instead of using a ripple carry adder.
- Full 1-bit adder can add 3 bits!
- Only the last step requires a ripple carry adder.

1011	(11)
1101	(13)
1011	
0000	
1011	
1011	
10001111	(143)
	1101 1011 0000 1011 1011

	101 <mark>1</mark>	
+	0000	carry save add
	01011	
+	000	carry
	010 <mark>11</mark>	
+	1011	carry save add
	100111	
+	010	carry
	100111	
	1011	
+	1011 010	carry save add
		carry save add
+ +	010	carry save add
	010 110 <mark>1111</mark>	•
	010 110 <mark>1111</mark>	•
	010 110 <mark>1111</mark> 010	•

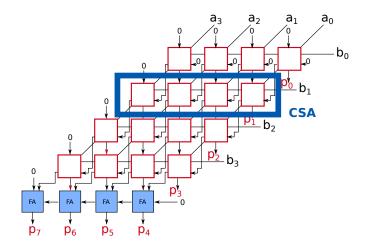
Multiplication with a Carry-save Adder Array

- · CSAs propagate the carry out bits down, not left
- The last stage of (e.g., carry-lookahead) adders propagate carries to the left

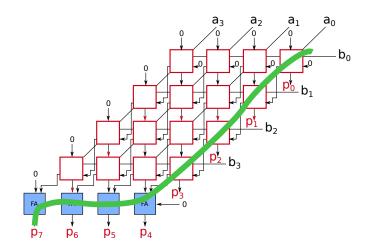


In a given row, each cell is independent from its neighbours:

- Carries don't propagate within rows
- Each row is computed in parallel!



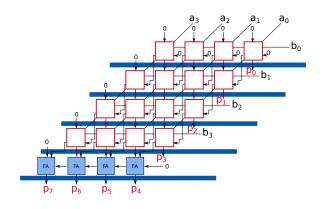
Propagation delay: n + n= $2 \cdot n$



Pipelined Array Multiplier

We can pipeline the array to increase throughput:

- · Insert a pipeline register between each row
- Each clock cycle, new data is fed into the pipeline



Addition Tree Multiplication

Array multipliers lay out well in 2D, but they don't take advantage of all available parallelism; other organizations are faster.

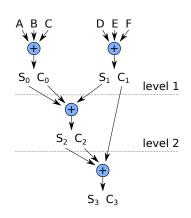
We can break down the sum into separate parts and solve them independently.

				A+B+C			
ΛιD	. C. D	+E+F				101011	Α
A+D-	+C+D	+ [+ [000000	В
		101011	(43)		+	101011	C
	×	001101	(13)			10000111	S ₀
		101011	Α			001010000	C_{Θ}
		000000	В				
		101011	C	D. F. F			
		101011	D	D+E+F			
		000000	E			101011	D
	+	000000	F			000000	Ε
		001000101111	(559)		+	000000	F
			, ,	•		00101011	S ₁
						0000000	C_1

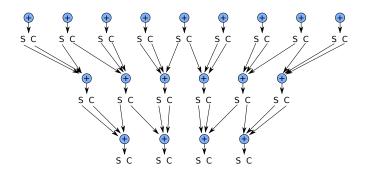
$$S_{\theta}+C_{\theta}+S_{1}$$

$$\begin{array}{c} \mathsf{C}_1 + \mathsf{S}_2 + \mathsf{C}_2 \\ & 00000000 & \mathsf{C}_1 \\ & 00110001111 & \mathsf{S}_2 \\ + & 00010100000 & \mathsf{C}_2 \\ \hline & 00100101111 & \mathsf{S}_3 \\ & 00100000000 & \mathsf{C}_3 \end{array}$$

Full carry-ripple addition of S3+C3:



Addition Tree with 3-2 Reducer



At each level, reduce by a factor 3/2 = 1.5.

Complexity of multiplication of n bits number is now: $\cong log_{1.5}(n) \cong 1.7log_2(n)$ for inputs of n bits.

Other Techniques

Several other complementary techniques (not discussed in this class) exist for designing fast adders:

- Bit-pair recoding / Booth algorithm
- · Wallace/Dadda Tree multiplier

Multiplication of Signed Numbers

Textbook§9.4

Multiplying Signed Numbers

- If the multiplicand is negative, we could sign extend during additions
 - Example: $-11 \times 13 = 10101 \times 01101$ in two's complement (5 bits)

- Alternatively, if either the multiplier or the multiplicand is negative, negate it and negate the result.
- If both multiplier/multiplicand are negative, negate both numbers and proceed as usual.

Floating Point Numbers and Operations

Textbook§9.7

Fixed-Point Representation

Consider these two examples of numbers:

- Integer: $72 = 2^3 + 2^6 = 1001000_2$
- Real: 72.25 =???₂ How to represent this number in binary?

Fixed-point representation:

- Reserve a fixed number of bits for the integer part, and the remaining for the fractional part
- · For instance:

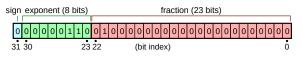
 $\cdot ...001001000.010000000_2 = 2^3 + 2^6 + 2^{-2} = 72.25_{10}$

Problems:

- Amount of precision after the point is fixed
- · Cannot represent extremely large or extremely small numbers

Floating-Point Representation

Alternatively, we can represent numbers with a sign bit s, an unsigned exponent exp, and an unsigned mantissa fraction m. E.g.,:



source: Modified by Christophe Dubach, Original by Vectorization: Stannered CC BY-SA 3.0 https://commons.wikimedia.org/wiki/File:Float example.svg

All such numbers take the form $(-1)^s \times m \times 2^e$, e.g.,

•
$$0.01000..._2 \times 2^{00000110_2} = (2^{-2}) * (2^6) = 0.25 * 64 = 16_{10}$$

•
$$0.11100..._2 \times 2^{00000010_2} = (2^{-1} + 2^{-2} + 2^{-3}) * (2^2) = 0.875 * 4 = 3.5_{10}$$

Note that:

- The mantissa **m** is expressed as a *fraction*, e.g., $\in [0,1)$
- The exponent e can be represented in 2's complement (signed) or using biased notation (explained later)

Normalized Representation

Consider these following encodings for the *same real number*:

Base 2	S	Exponent	Mantissa fraction
0.0011 ×	0	0000000	001100
2 ⁰			
0.011 ×	0	1111111	011000
2^{-1}			
0.11×2^{-2}	0	1111110	110000

This encoding is *wasteful* (there's more than one way to represent a single number), and risks *loss of accuracy* (the farther to the right the leading '1' in the fraction, the fewer bits available to represent it).

What if we encode all our numbers as on the last row? In this case, the first bit of the mantissa is always one; *that's also wasteful*.

Using *normalized* representation:

1.1×2^{-3}	0	1111101	1000000
---------------------	---	---------	---------

Now the number represented is $(-1)^s \times (1.m) \times 2^e$

Biased Exponent

Instead of using a signed number for the exponent, sometimes it might be useful to use an unsigned value.

- This might simplify the hardware when comparing floating point values (which involves comparing the exponents).
- · Since the exponent must be able to represent both positive and negative numbers, we subtract a bias from the exponent.

The value represented becomes $\left| \, (-1)^s \times (1.\text{m}) \times 2^{e-\text{bias}} \, \right|$, where eis an unsigned (positive) number.

When e < bias, the represented number < 1.

The bias is typically chosen in the middle of the valid range for e. E.g., if e is an 8-bit value, the bias would be $2^8/2 = 2^7 = 128$.

IEEE 754 Floating-Point Representation

Most modern machines use the IEEE 754 Standard for Floating-Point Arithmetic. To represent single-precision (32-bit) real numbers:

- 1-bit sign s
- 8-bit exponent e with a bias of 127 (\neq 128)
- · 23-bit mantissa m (normalized)

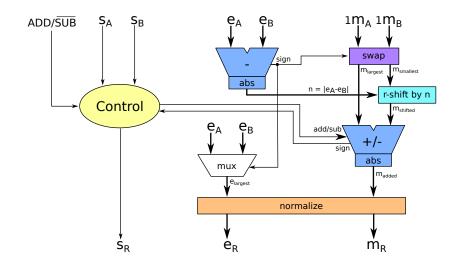
The value represented is: $\left[(-1)^{\text{s}} \times (1.\text{m}) \times 2^{\text{e}-127} \right]$

Note that:

- e = 1111111 is reserved to represent not-a-number (NaN), infinity, or special case (e.g., division by zero).
- e = 0000000 is used for unnormalized numbers, *i.e.*, numbers smaller than 2^{-126} , and zero.

For double-precision (64-bit), the exponent is 11 bits, and the mantissa 52 bits.

Simplified Add/Sub Floating-Point Unit



Steps for computation:

- 1. Subtract the two exponents, $n = |e_A e_B|$;
- If sign is negative, swap the two mantissas so that the mantissa corresponding with the smallest exponent (m_{smallest}) is the input to the shifter;
- 3. Shift m_{smallest} right by n;
- 4. Add/subtract m_{shifted} and/from m_{largest} , and take absolute value.
 - ALU operation = $f(s_a, s_b, ADD/\overline{SUB})$;
- Using the largest exponent e_{largest} and the output of the ALU m_{added}, normalize the exponent and mantissa;
- 6. s_R depends on signs s_A and s_B and the resulting sign when computing m_{added} .

Example: 2.25 - 12.75 = -10.5

- $A = 2.25_{10} = 10.01_2 = 1.001_2 \times 2^1$
- · $B = 12.75_{10} = 1100.11_2 = 1.10011_2 \times 2^3$

	S	е	m
Α	0	10000000(127 + 1)	0010000
В	0	10000010(127 + 3)	100110 · · · 0
R	1	10000010(127 + 3)	010100 · · · 0

Step-by-step:

- 1. n = 2; sign: negative
- 2. $m_{smallest} = m_A = 1.001000 \cdots 0, m_{largest} = m_B = 1.100110 \cdots 0$
- 3. $m_{\text{shifted}} = m_{\text{smallest}} >> 2 = 1.001000 \cdots 0 >> 2 = 0.010010 \cdots 0$
- 4. $m_{added} = |m_{largest} m_{shifted}| = 1.01010 \cdots 0$
- 5. mantissa is already normalized

$$\Rightarrow$$
 $m_R=$ 010100 \cdots 0, $e=3+127=130$

6. $s_R = 1$

result =
$$-1.0101_2 \times 2^3 = -1010.1_2 = -10.5_{10}$$

This process looks like this in conventional long-hand arithmetic:

$$\begin{split} 2.25_{10} &= 10.01_2 = 1.001_2 \times 2^1 \\ 12.75_{10} &= 1100.11_2 = 1.10011_2 \times 2^3 \end{split}$$

	1.00100	\times 2 ¹	A (smallest)
_	1.10011	$\times2^3$	B (largest)
	0.01001	$\times 2^3$	A shifted
_	1.10011	$\times2^3$	
	00.01001	$\times 2^3$	A with sign bit added
+	10.01101	$\times2^3$	B two's complement
	10.10110	$\times 2^3$	

 $\begin{aligned} |10.10110| \times 2^3 &= 01.01010 \times 2^3 = 1010.10_2 = 10.5_{10} \\ \text{Add the sign } \Rightarrow -10.5_{10}. \end{aligned}$

Floating-Point Multiplication

In this context, multiplication is easier than addition:

- 1. Sum the exponents (and subtract the bias, else it is added twice)
- 2. Multiply the mantissas (using the implicit 1's)
- 3. Normalize

Example:
$$A = 2.5$$
, $B = 0.75$

$$2.5_{10} \times 0.75_{10} = 10.1_2 \times 0.11_2 = 1.01 \times 2^1 \times 1.1 \times 2^{-1}$$

- 1. Sum exponents: 1 + (-1) = 0
- 2. Multiply mantissas: $1.01 \times 1.1 = 1.01 + 0.101 = 1.111$
- 3. Already normalized \Rightarrow $m_R = 1110 \cdots 0$, $e_R = 127 + 0 = 0111111$

$$R=1.111\times 2^{\theta}=1.111=1.875_{1\theta}$$

Other Considerations

Although this will not be discussed further in this class, there are other details about floating point representation/operations:

· Special values need special treatment:

Special Value	exponent	mantissa
$\pm \infty$	255	0
±NaN (Not a Number)	255	≠ 0
± 0	0	0
Denormal numbers (\pm 0.m \times 2 ⁻¹²⁶)	0	≠ 0

- Exceptions: e.g., division by 0, squared root of -1 (result in NaN)
- Rounding/Truncating: sometimes we may need to reduce number of bits for the mantissa
 - · We may need to do more than simply dropping a bit
 - e.g., in base 10, going from 4 digits to 3: $0.2222_{10} \cong 0.222_{10} \text{ whereas } 0.7777_{10} \cong 0.778_{10}$

Conclusion

This lecture has:

- · Introduced how fast addition can be implemented hardware
- Explained how multiplication can be implemented in hardware
- Introduced floating-point number representation
- · Shown how floating-point addition and multiplication work

The End!