
ECSE324 : Computer Organization
Arithmetic
Chapter 9

Christophe Dubach
Fall 2022

Revision history:

Warren Gross – 2017

Christophe Dubach – W2020, F2020, F2021, F2022

Brett H. Meyer – W2021, W2022

Some material from Hamacher, Vranesic, Zaky, and Manjikian, Computer Organization and Embedded Systems, 6 th ed, 2012.

Timestamp: 2022/11/22 10:22:00

1

Disclaimer

It is possible (and even likely) that I will (sometimes) make mistakes
and give incorrect information during the live lectures. If you have
any doubts, please check the textbook, or ask for clarification online.

2

Addition and Subtraction
Textbook§9.1, 9.2

Ripple Carry Adder (Recap)

S = A+ B

1-bit
Full

Adder

1-bit
Full

Adder

1-bit
Full

Adder

1-bit
Full

AdderC3 C2 C1 C0C4

A3 B3 A2 B2 A1 B1 A0 B0

S3 S2 S1 S0

source: https://commons.wikimedia.org/wiki/File:4-bit_ripple_carry_adder.svg en:User:Cburnett / CC BY-SA

3

https://commons.wikimedia.org/wiki/File:4-bit_ripple_carry_adder.svg

Addition/Subtraction in Hardware (Recap)

Form 2’s complement of A and add to B: B− A = B+ (−A).

In hardware, invert the bits and add one using carry-in C0. D selects
between addition and subtraction.

1-bit
Full

Adder

1-bit
Full

Adder

1-bit
Full

Adder

1-bit
Full

AdderC3 C2 C1 C0C4

A3 B3 A2 B2 A1 B1 A0 B0

S3 S2 S1 S0

1 0 1 0 1 0 1 0

D

source: https://commons.wikimedia.org/wiki/File:4-bit_ripple_carry_adder-subtracter.svg en:User:Cburnett / CC BY-SA

4

https://commons.wikimedia.org/wiki/File:4-bit_ripple_carry_adder-subtracter.svg

Addition/Subtraction in Hardware (Recap)

1-bit
Full

Adder

1-bit
Full

Adder

1-bit
Full

Adder

1-bit
Full

AdderC3 C2 C1 C0C4

A3 B3 A2 B2 A1 B1 A0 B0

S3 S2 S1 S0

source: https://commons.wikimedia.org/wiki/File:4-bit_ripple_carry_adder.svg en:User:Cburnett / CC BY-SA

Full adder gates:

Cin

outC

S

The MSB bit (S3) depends on having computed the carry of each
preceding bits (at least a delay of two gates between carries).

Exclamation-Triangle
The delay for the last carry bit is proportional to the total
number of bits involved in the addition!

In the case of 32-bit (or 64-bit) integers, this leads to significant delay.

Can we re-organize the circuit to control how delay grows? (Yes.)
5

https://commons.wikimedia.org/wiki/File:4-bit_ripple_carry_adder.svg

Carry Propagation and Generation

The addition of two digits generates if it always produce a carry

• E.g., 58+ 71: 5+ 7 generates, but 8+ 1 does not.

Definition
For binary addition, Ai + Bi generates if and only if both Ai and Bi
are 1. Gi = Ai · Bi (= Ai AND Bi)

The addition of two digits propagates if it is carried only when there
is an input carry

• E.g., 53+ 41: 5+ 4 propagates, but 3+ 1 does not.

Definition
For binary addition, Ai + Bi propagates if and only if one of Ai or
Bi is 1. Pi = Ai + Bi (= Ai OR Bi)

6

Ai Bi Ci Ci+1 Carry Type

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1 Propagate
1 0 0 0
1 0 1 1 Propagate
1 1 0 1 Generate
1 1 1 1 Propagate & Generate

Lightbulb
The addition of two bits produces a carry only when it gen-
erates or when there is a carry in and it propagates.

In Boolean algebra:

Ci+1 = Gi + PiCi,where
Gi = AiBi
Pi = Ai + Bi

7

Carry-lookahead Addition

We can use carry propagation and generation to break the
dependence of Ci on Ci−1 (i 6= 1), reducing delay. In the case of a
four bit adder, we have:

C1 = G0 + C0P0
C2 = G1 + G0P1 + C0P0P1
C3 = G2 + G1P2 + G0P1P2 + C0P0P1P2
C4 = G3 + G2P3 + G1P2P3 + G0P1P2P3 + C0P0P1P2P3

THUMBS-UP
The delay for Gi and Pi is one gate each. The delay for Ci is
therefore only three gates, assuming we can havemore than
two inputs per AND/OR gate, and fan-out is not a problem.

8

Carry-lookahead Adder

We can build a 16-bit carry-lookahead adder out of four 4-bit adders.

1-bit
full

adder

1-bit
full

adder

1-bit
full

adder

1-bit
full

adder

C0

C4

A3 B3 A2 B2 A1 B1 A0 B0

S3 S2 S1 S0

4-bit carry look-ahead
C3 C2 C1 p0 g0

PG GG

p1 g1p2 g2p3 g3

source: https://en.wikipedia.org/wiki/File:4-bit_carry_lookahead_adder.svgen:User:Cburnett / CC BY-SA

• PG = Group Propagate = P0P1P2P3
• GG = Group Generate = G3 + G2P3 + G1P3P2 + G0P3P2P1

INFO-CIRCLE
Pi,Gi only depend on Ai,Bi ⇒ logic delay of PG and GG is
independent of the number of bits. 9

https://en.wikipedia.org/wiki/File:4-bit_carry_lookahead_adder.svg

Multi-level Carry-Lookahead Adder

Lightbulb
Carry-lookahead adders can be combined to make larger
adders, e.g., four 16-bit adders make a 64-bit adder.

16-bit
LCU

Adder

16-bit
LCU

Adder

16-bit
LCU

Adder

16-bit
LCU

Adder

C0

C64

A48..63 B48..63 A32..47 B32..47 A16.31 B16..31 A0..15 B0..15

S48..63 S32..47 S16..31 S0..15

64-bit Lookahead Carry Unit
C48 C32 C16 p0 g0

PG GG

p16 g16p32 g32p48 g48

source: https://commons.wikimedia.org/wiki/File:64-bit_lookahead_carry_unit.svg en:User:Cburnett / CC BY-SA

The 4-bit group circuit is the same here before!

10

https://commons.wikimedia.org/wiki/File:64-bit_lookahead_carry_unit.svg

More than two ways to add two numbers

There are lots of ways to add two numbers; the different options
strike complex trade-offs between cost and delay.

Approved versions of
the Signature
There are two approved ver-
sions of the signature. These
should preferably appear in red,
but could alternatively
appear in black, grey, or
white, if necessary.

Version 1
Version 1 in red is the pre-
ferred version and should
be used whenever possible.
This version appears on the
University’s official letterhead
and business cards.

Version 2
Version 2 is to be used only for
publications destined for distant
places where it is believed that
the word “University” is neces-
sary for recognition.

Other symbols of the
University

Over time, a number of symbols,
logos, or marks have been used
to identify McGill University.
The coat of arms, shield, and
signature illustrated above are
the only versions sanctioned for
current use. Consult the
Secretary-General for permis-
sion to use any other graphic
identity. Final approval rests
with the Board of Governors.

Using the Signature,
Coat of Arms, or Shield
in publications
It is important that the full
University signature (the shield
plus the wordmark) appear on
the front cover of brochures, fly-
ers, folders, newsletters, and
other printed materials produced
by the University for dissemina-
tion outside the University.
In instances where a document
is for internal use only, or is
clearly associated with McGill,
the coat of arms or shield alone
may provide sufficient identifi-
cation.

6

Taxonomy	Revisited

3
8

©	2016	Harris,	Meyer

f (Fanout)

t (Wire Tracks)

l (Logic Levels)

0 (2)
1 (3)

2 (5)

3 (9)

0 (4)

1 (5)

2 (6)

3 (8)

2 (4)

1 (2)

0 (1)

3 (7)

Kogge-
Stone

Sklansky

Brent-
Kung

Han-
Carlson

Knowles
[2,1,1,1]

Knowles
[4,2,1,1]

Ladner-
Fischer

Han-
Carlson

Ladner-
Fischer

New
(1,1,1)

(c) Kogge-Stone

1:02:13:24:35:46:57:68:79:810:911:1012:1113:1214:1315:14

3:04:15:26:37:48:59:610:711:812:913:1014:1115:12

4:05:06:07:08:19:210:311:412:513:614:715:8

2:0

0123456789101112131415

15:014:013:012:011:010:0 9:0 8:0 7:0 6:0 5:0 4:0 3:0 2:0 1:0 0:0

(e) Knowles [2,1,1,1]

1:02:13:24:35:46:57:68:79:810:911:1012:1113:1214:1315:14

3:04:15:26:37:48:59:610:711:812:913:1014:1115:12

4:05:06:07:08:19:210:311:412:513:614:715:8

2:0

0123456789101112131415

15:014:013:012:011:010:0 9:0 8:0 7:0 6:0 5:0 4:0 3:0 2:0 1:0 0:0

(b) Sklansky

1:0

2:03:0

3:25:47:69:811:1013:1215:14

6:47:410:811:814:1215:12

12:813:814:815:8

0123456789101112131415

15:014:013:012:011:010:0 9:0 8:0 7:0 6:0 5:0 4:0 3:0 2:0 1:0 0:0

1:03:25:47:69:811:1013:12

3:07:411:815:12

5:07:013:815:8

15:14

15:8 13:0 11:0 9:0

0123456789101112131415

15:0 14:0 13:0 12:0 11:0 10:0 9:0 8:0 7:0 6:0 5:0 4:0 3:0 2:0 1:0 0:0

(f) Ladner-Fischer

(a) Brent-Kung

1:03:25:47:69:811:1013:1215:14

3:07:411:815:12

7:015:8

11:0

5:09:013:0

0123456789101112131415

15:014:013:0 12:011:010:0 9:0 8:0 7:0 6:0 5:0 4:0 3:0 2:0 1:0 0:0

1:03:25:47:69:811:1013:1215:14

3:05:27:49:611:813:1015:12

5:07:09:211:413:615:8

0123456789101112131415

15:014:013:012:011:010:0 9:0 8:0 7:0 6:0 5:0 4:0 3:0 2:0 1:0 0:0

(d) Han-Carlson

ECSE	548,	F-16,	Lecture	16
11

Multiplication
Textbook§9.3

Multiplication as Sum of Partial Products

Decimal multiplication

11
× 13

33
+ 11

143

Binary multiplication

1011 (11)
× 1101 (13)

1011
0000

1011
+ 1011

10001111 (143)

12

Sequential Multiplication: Shift and Add Multiplier

Multiplication in binary is equivalent to a series of shifts and
additions.

• Inputs: Multiplicand A, Multiplier B, n bits wide
• Output: Product P = A× B, 2× n bits wide

Phigh

+

A 0

c

carry

Plow p0

0

1

Shift registers

B Sequential Control Algorithm:
1. Initialize Phigh with zero and
Plow with B

2. Update P and C with the
result of addition

3. Shift C, P and B right by 1
4. Repeat steps 2–3, n− 1 times

Requires n clock cycles to compute result; only used by low-cost
CPUs. 13

Phigh

+

A 0

c

carry

Plow p0

0

1

Shift registers

B

Example: A = 10112 = 1110, B = 11012 = 1310
Action C Phigh Plow p0
init ? 0000 1101 1
update 0 1011 1101 1
shift ? 0101 1110 0
update 0 0101 1110 0
shift ? 0010 1111 1
update 0 1101 1111 1
shift ? 0110 1111 1
update 1 0001 1111 1
shift ? 1000 1111 1

14

Combinational Multiplication: Array Multiplier

Lightbulb
Instead of computing in time, we can compute in space us-
ing a systolic array of adder cells.

• bi controls whether ai is added or not
• partial sum propagates downwards

a3 a2 a1 a0
0000

b0

b1

b2

b3

p0

p1

p2

p3p4p5p6p7

0

0

0

0

FA
carry
in

carry
out

sum
out

sum
in

ai

bi

Much faster than shift-and-add multiplication at the cost of Si area.
15

Example: 1011× 1101

a3 a2 a1 a0
0000

b0

b1

b2

b3

p0

p1

p2

p3p4p5p6p7

0

0

0

0

FA
carry
in

carry
out

sum
out

sum
in

ai

bi

16

Max delay: n+ 2 · (n− 1) = 3 · n− 2 ∼= 3 · n

a3 a2 a1 a0
0000

b0

b1

b2

b3

p0

p1

p2

p3p4p5p6p7

0

0

0

0

17

Fast Multiplication
Textbook§9.5

Carry-save Addition

• When summing multiple
values, can save the carry and
add it instead of using a
ripple carry adder.

• Full 1-bit adder can add 3 bits!
• Only the last step requires a
ripple carry adder.

1011 (11)
× 1101 (13)

1011
0000
1011

+ 1011
10001111 (143)

1011
+ 0000 carry save add

01011
+ 000 carry

01011
+ 1011 carry save add

100111
+ 010 carry

100111
1011

+ 010 carry save add
1101111

+ 010 carry

1101111
+ 010 ripple carry add

1
1
0001111

18

Multiplication with a Carry-save Adder Array

• CSAs propagate the carry out bits down, not left
• The last stage of (e.g., carry-lookahead) adders propagate
carries to the left

a3 a2 a1 a0
0000

b0

b1

b2

b3

p0

p1

p2

p4p5p6p7

0

0

0

000 0

FAFAFAFA

0

0
p3

19

In a given row, each cell is independent from its neighbours:

• Carries don’t propagate within rows
• Each row is computed in parallel!

a3 a2 a1 a0
0000

b0

b1

b2

b3

p0

p1

p2

p4p5p6p7

0

0

0

000 0

FAFAFAFA

0

0
p3

CSA

20

INFO-CIRCLE
Propagation delay: n+ n
= 2 · n

a3 a2 a1 a0
0000

b0

b1

b2

b3

p0

p1

p2

p4p5p6p7

0

0

0

000 0

FAFAFAFA

0

0
p3

21

Pipelined Array Multiplier

We can pipeline the array to increase throughput:

• Insert a pipeline register between each row
• Each clock cycle, new data is fed into the pipeline

a3 a2 a1 a0
0000

b0

b1

b2

b3

p0

p1

p2

p4p5p6p7

0

0

0

000 0

FAFAFAFA

0

0
p3

22

Addition Tree Multiplication

Array multipliers lay out well in 2D, but they don’t take advantage of
all available parallelism; other organizations are faster.

Lightbulb
We can break down the sum into separate parts and solve
them independently.

A+B+C+D+E+F
101011 (43)

× 001101 (13)
101011 A
000000 B
101011 C
101011 D
000000 E

+ 000000 F
001000101111 (559)

A+B+C
101011 A
000000 B

+ 101011 C
10000111 S0
001010000 C0

D+E+F
101011 D
000000 E

+ 000000 F
00101011 S1
00000000 C1

23

S0 + C0 + S1
10000111 S0
001010000 C0

+ 00101011 S1
00110001111 S2
00010100000 C2

C1 + S2 + C2
00000000 C1
00110001111 S2

+ 00010100000 C2
00100101111 S3
00100000000 C3

Full carry-ripple addition of S3+C3:

00100101111 S3
+ 00100000000 C3

01000101111 559

A B C D E F

S0 C0

+

S1 C1

+

S2 C2

+

S3 C3

+

level 1

level 2

24

Addition Tree with 3-2 Reducer

S C

+

S C

+

S C

+

S C

+

S C

+

S C

+

S C

+

S C

+

S C

+

S C

+

S C

+

S C

+

S C

+

S C

+

S C

+

S C

+

S C

+

S C

+

S C

+

At each level, reduce by a factor 3/2 = 1.5.

THUMBS-UP
Complexity of multiplication of n bits number is now:
∼= log1.5(n) ∼= 1.7log2(n) for inputs of n bits.

25

Other Techniques

Several other complementary techniques (not discussed in this
class) exist for designing fast adders:

• Bit-pair recoding / Booth algorithm
• Wallace/Dadda Tree multiplier

26

Multiplication of Signed Numbers
Textbook§9.4

Multiplying Signed Numbers

• If the multiplicand is negative, we could sign extend during
additions

• Example: − 11× 13 = 10101× 01101 in two’s complement (5
bits)

10101 (−11)
× 01101 (13)

1111110101
000000000
11110101
1110101

+ 000000
1101110001 (−143)

• Alternatively, if either the multiplier or the multiplicand is
negative, negate it and negate the result.

• If both multiplier/multiplicand are negative, negate both
numbers and proceed as usual.

27

Floating Point Numbers and
Operations
Textbook§9.7

Fixed-Point Representation

Consider these two examples of numbers:

• Integer: 72 = 23 + 26 = 10010002
• Real: 72.25 =???2 How to represent this number in binary?

Fixed-point representation:

• Reserve a fixed number of bits for the integer part, and the
remaining for the fractional part

• For instance:
integer (24bits) fraction (8 bits)

0831

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0

7

source: Modified by Christophe Dubach. Original from Vectorization: Stannered, CC BY-SA 3.0 https://commons.wikimedia.org/wiki/File:Float_example.svg

• ...001001000.010000002 = 23 + 26 + 2−2 = 72.2510

Problems:

• Amount of precision after the point is fixed
• Cannot represent extremely large or extremely small numbers

28

https://commons.wikimedia.org/wiki/File:Float_example.svg

Floating-Point Representation

Alternatively, we can represent numbers with a sign bit s, an
unsigned exponent exp, and an unsigned mantissa fraction m. E.g.,:

sign exponent (8 bits) fraction (23 bits)

02331

0 0 0 0 0 0 1 1 0 0 1 0

30 22 (bit index)

source: Modified by Christophe Dubach. Original by Vectorization: Stannered, CC BY-SA 3.0 https://commons.wikimedia.org/wiki/File:Float_example.svg

All such numbers take the form (−1)s × m× 2e , e.g.,

• 0.01000...2 × 2000001102 = (2−2) ∗ (26) = 0.25 ∗ 64 = 1610
• 0.11100...2 × 2000000102 = (2−1 + 2−2 + 2−3) ∗ (22) =
0.875 ∗ 4 = 3.510

Note that:

• The mantissa m is expressed as a fraction, e.g., ∈ [0,1)
• The exponent e can be represented in 2’s complement (signed)
or using biased notation (explained later)

29

https://commons.wikimedia.org/wiki/File:Float_example.svg

Normalized Representation

Consider these following encodings for the same real number:

Base 2 S Exponent Mantissa fraction
0.0011 ×
20

0 0000000 001100...

0.011 ×
2−1

0 1111111 011000...

0.11×2−2 0 1111110 110000...

This encoding is wasteful (there’s more than one way to represent a
single number), and risks loss of accuracy (the farther to the right
the leading ‘1’ in the fraction, the fewer bits available to represent it).

What if we encode all our numbers as on the last row? In this case,
the first bit of the mantissa is always one; that’s also wasteful.

Using normalized representation:

1.1× 2−3 0 1111101 1000000...

Now the number represented is (−1)s × (1.m)× 2e . 30

Biased Exponent

Instead of using a signed number for the exponent, sometimes it
might be useful to use an unsigned value.

• This might simplify the hardware when comparing floating point
values (which involves comparing the exponents).

• Since the exponent must be able to represent both positive and
negative numbers, we subtract a bias from the exponent.

The value represented becomes (−1)s × (1.m)× 2e−bias , where e
is an unsigned (positive) number.

INFO-CIRCLE When e < bias, the represented number < 1.

The bias is typically chosen in the middle of the valid range for e.
E.g., if e is an 8-bit value, the bias would be 28/2 = 27 = 128.

31

IEEE 754 Floating-Point Representation

Most modern machines use the IEEE 754 Standard for Floating-Point
Arithmetic. To represent single-precision (32-bit) real numbers:

• 1-bit sign s
• 8-bit exponent e with a bias of 127 (6= 128)
• 23-bit mantissa m (normalized)

The value represented is: (−1)s × (1.m)× 2e−127

Note that:

• e = 1111111 is reserved to represent not-a-number (NaN),
infinity, or special case (e.g., division by zero).

• e = 0000000 is used for unnormalized numbers, i.e., numbers
smaller than 2−126, and zero.

For double-precision (64-bit), the exponent is 11 bits, and the
mantissa 52 bits.

32

Simplified Add/Sub Floating-Point Unit

r-shift by n

swap

eA eB 1mA 1mB

normalize

mR

 n = |eA-eB|

mux

sign

eA eB

eR

Control

ADD/SUB sA sB

sign

add/sub

sR

madded
elargest

mshifted

msmallestmlargest

abs

+/-

abs

-

33

Steps for computation:

1. Subtract the two exponents, n = |eA − eB|;
2. If sign is negative, swap the two mantissas so that the mantissa
corresponding with the smallest exponent (msmallest) is the
input to the shifter;

3. Shift msmallest right by n;
4. Add/subtract mshifted and/from mlargest, and take absolute
value.
ALU operation = f(sa,sb,ADD/SUB);

5. Using the largest exponent elargest and the output of the ALU
madded, normalize the exponent and mantissa;

6. sR depends on signs sA and sB and the resulting sign when
computing madded.

34

Example: 2.25− 12.75 = −10.5

• A = 2.2510 = 10.012 = 1.0012 × 21

• B = 12.7510 = 1100.112 = 1.100112 × 23

s e m
A 0 10000000(127+ 1) 001000 · · ·0
B 0 10000010(127+ 3) 100110 · · ·0
R 1 10000010(127+ 3) 010100 · · ·0

Step-by-step:

1. n = 2; sign: negative
2. msmallest = mA = 1.001000 · · ·0,mlargest = mB = 1.100110 · · ·0
3. mshifted = msmallest >> 2 = 1.001000 · · ·0 >> 2 =

0.010010 · · ·0
4. madded = |mlargest − mshifted| = 1.01010 · · ·0
5. mantissa is already normalized

⇒ mR = 010100 · · ·0, e = 3+ 127 = 130
6. sR = 1

result = −1.01012 × 23 = −1010.12 = −10.510
35

This process looks like this in conventional long-hand arithmetic:

2.2510 = 10.012 = 1.0012 × 21

12.7510 = 1100.112 = 1.100112 × 23

1.00100 × 21 A (smallest)
− 1.10011 × 23 B (largest)

0.01001 × 23 A shifted
− 1.10011 × 23

00.01001 × 23 A with sign bit added
+ 10.01101 × 23 B two’s complement

10.10110 × 23

|10.10110| × 23 = 01.01010× 23 = 1010.102 = 10.510

Add the sign ⇒ −10.510.

36

Floating-Point Multiplication

In this context, multiplication is easier than addition:

1. Sum the exponents (and subtract the bias, else it is added twice)
2. Multiply the mantissas (using the implicit 1’s)
3. Normalize

Example: A = 2.5, B = 0.75

2.510 × 0.7510 = 10.12 × 0.112 = 1.01× 21 × 1.1× 2−1

1. Sum exponents: 1+ (−1) = 0
2. Multiply mantissas: 1.01× 1.1 = 1.01+ 0.101 = 1.111
3. Already normalized ⇒ mR = 1110 · · ·0,
eR = 127+ 0 = 0111111

R = 1.111× 20 = 1.111 = 1.87510

37

Other Considerations

Although this will not be discussed further in this class, there are
other details about floating point representation/operations:

• Special values need special treatment:
Special Value exponent mantissa

±∞ 255 0
±NaN (Not a Number) 255 6= 0
± 0 0 0
Denormal numbers (± 0.m× 2−126) 0 6= 0

• Exceptions: e.g., division by 0, squared root of − 1 (result in
NaN)

• Rounding/Truncating: sometimes we may need to reduce
number of bits for the mantissa

• We may need to do more than simply dropping a bit
• e.g., in base 10, going from 4 digits to 3:
0.222210 ∼= 0.22210 whereas 0.777710 ∼= 0.77810

38

Conclusion

This lecture has:

• Introduced how fast addition can be implemented hardware
• Explained how multiplication can be implemented in hardware
• Introduced floating-point number representation
• Shown how floating-point addition and multiplication work

The End!

39

	Addition and Subtraction Textbook§9.1, 9.2
	Multiplication Textbook§9.3
	Fast Multiplication Textbook§9.5
	Multiplication of Signed Numbers Textbook§9.4
	Floating Point Numbers and Operations Textbook§9.7

