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Disclaimer

It is possible (and even likely) that | will (sometimes) make mistakes
and give incorrect information during the live lectures. If you have
any doubts, please check the textbook, or ask for clarification online.



Addition and Subtraction

Textbookg§9.1, 9.2



Ripple Carry Adder (Recap)
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Addition/Subtraction in Hardware (Recap)

Form 2's complement of A and add to B: B — A =B + (—A).

In hardware, invert the bits and add one using carry-in Cq. D selects
between addition and subtraction.
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Addition/Subtraction in Hardware (Recap)

A3 B3 A2 B2 A1 B1 Ao Bo
l l l l l l l i Full adder gates:
1-bit 1-bit 1-bit 1-bit
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The MSB bit (S3) depends on having computed the carry of each
preceding bits (at least a delay of two gates between carries).

A

In the case of 32-bit (or 64-bit) integers, this leads to significant delay.

The delay for the last carry bit is proportional to the total
number of bits involved in the addition!

Can we re-organize the circuit to control how delay grows? (Yes.)


https://commons.wikimedia.org/wiki/File:4-bit_ripple_carry_adder.svg

Carry Propagation and Generation

The addition of two digits generates if it produce a carry
- Eg, 58+ 71: 5+ 7 generates, but 8 + 1 does not.

Definition

For binary addition, A; + B; generates if and only if both A; and B;
are 1. Gy = A; - B; (: A; AND Bl)

The addition of two digits propagates if it is carried there
isan input carry

- Eg, 53+ 41: 5+ 4 propagates, but 3 + 1 does not.

Definition
For binary addition, A; + B; propagates if and only if one of A; or
B; is1. P; =A; +B; (= A; OR Bi)
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0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1 Propagate
1 0 0 0

1 0 1 1 Propagate
1 1 0 1 Generate
1 1 1 1

Propagate & Generate

@ The addition of two bits produces a carry only when it gen-
L erates or when there is a carry in and it propagates.

In Boolean algebra:
Ci 1 =G; +P;iCi,where
G; = A;B;
P; =A; +B;



Carry-lookahead Addition

We can use carry propagation and generation to break the
dependence of C; on Ci_; (1 # 1), reducing delay. In the case of a
four bit adder, we have:

C1 =Gp + CoPo

Cy =Gy 4+ GgP1 4+ CoPgP1

C3 = Gy + G1P2 + GeP1P2 + CoPoP1P

C4 = G3 + GoP3 + G1P2P3 + GoP1P2P3 + CoPgP1P;Ps

The delay for G; and P; is one gate each. The delay for C; is
l therefore only three gates, assuming we can have more than
two inputs per AND/OR gate, and fan-out is not a problem.



Carry-lookahead Adder

We can build a 16-bit carry-lookahead adder out of four 4-bit adders.

T 1T 11 1
1-bit 1-bit 1-bit 1-bit |
full full full full
adder adder adder adder
S3 S2 S1 So
P393 Cs3 P292 C; P101 C1  Pogo
Ca 4-bit carry look-ahead PG GG

'

- PG = Group Propagate = PgP1P,P3
- GG = Group Generate = G3 + GyP3 + G P3P, + GoP3P, P

Pi,G; only depend on A;,B; = logic delay of PG and GG is
independent of the number of bits. 9


https://en.wikipedia.org/wiki/File:4-bit_carry_lookahead_adder.svg

Multi-level Carry-Lookahead Adder

@ Carry-lookahead adders can be combined to make larger
> adders, e.g., four 16-bit adders make a 64-bit adder.

Asg.63 B4s.63 A32.47B32.47 A16.31B16.31 Ao.15Bo..15

16-bit 16-bit 16-bit 16-bit |
LCU LCU LCU LCU
Adder Adder Adder Adder

! | !
S48..63 S32..47 S16..31 So..15

v v v
P48 g48 Cas P320932 C32 P16916 Ci6 PO JO
Cea 64-bit Lookahead Carry Unit PG GG

-

ource: https: //comons wikinedia. org/wiki/File:64-bit_lookahead_carry_unit.s,

The 4-bit group circuit is the same here before!


https://commons.wikimedia.org/wiki/File:64-bit_lookahead_carry_unit.svg

More than two ways to add two numbers

There are lots of ways to add two numbers; the different options
strike complex trade-offs between cost and delay.
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Multiplication
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Decimal multiplication

11
X 13
33

+ 11
143

Multiplication as Sum of Partial Products

Binary multiplication

1011 (11)
X 1101 (13)

1011
0000
1011
+ 1011

10001111 (143)



Sequential Multiplication: Shift and Add Multiplier

Multiplication in binary is equivalent to a series of shifts and
additions.

- Inputs: Multiplicand A, Multiplier B, n bits wide
- Output: Product P = A x B, 2 x n bits wide

Sequential Control Algorithm:
: J..Shift registers - 1. Initialize Py;gn With zero and
[ Prion | Pow pol: PLoy With B

2. Update P and C with the
result of addition
3. Shift C, P and B right by 1

1
| AI o ] 4. Repeat steps 2-3, n — 1 times

Requires n clock cycles to compute result; only used by low-cost
CPUs.



Shift registers '

P:]igh H

Plow Po

l

1

| A

Example: A = 10115 = 1110, B = 1101, = 134

Action | C Phigh P1ow Pe
init ? 0000 1101 1
update | 0 1011 1101 1
shift ? 0101 1110 0
update | 0 0101 1110 0
shift ? 0010 1111 1
update | 0 1101 1111 1
shift ? 0110 1111 1
update | 1 0001 1111 1
shift ? 1000 1111 1

14



Combinational Multiplication: Array Multiplier

@ Instead of computing in time, we can compute in space us-

> ing a systolic array of adder cells.

- b; controls whether a; is added or not
- partial sum propagates downwards

sum a

d e HCH

sum
out

Much faster than shift-and-add multiplication at the cost of Si area.



Example: 1011 x 1101
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Fast Multiplication
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Carry-save Addition

1011
- When summing multiple + 0000 carry save add
values, can save the carry and 01011
- . + 000 carry
add it instead of using a
ripple carry adder. 01011
: : + 1011 carry save add
. - |
Full 1-bit adder can add 3 bits! To011
- Only the last step requires a + 010 carry
ripple carry adder.
PP / 100111
1011 (11) 1011
x 1101 (13) + 010 carry save add
1011 1101111
0000 + 010 carry
1011
L 1011 1101111
+ 010 ripple carry add

10001111 (143)

1
10001111



Multiplication with a Carry-save Adder Array

- CSAs propagate the carry out bits down, not left
- The last stage of (e.g., carry-lookahead) adders propagate
carries to the left

19



In a given row, each cell is independent from its neighbours:

- Carries don't propagate within rows
- Each row is computed in parallel!
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Pipelined Array Multiplier

We can pipeline the array to increase throughput:

- Insert a pipeline register between each row

- Each clock cycle, new data is fed into the pipeline

22



Addition Tree Multiplication

Array multipliers lay out well in 2D, but they don’t take advantage of
all available parallelism; other organizations are faster.

@ We can break down the sum into separate parts and solve
them independently.

w
A+B+C
101011 A
A+B+C+D+E+F 000000 B
101011  (43) + 101011 C
x 001101  (13) 10000111 Se
101011 A 001010000 Cq
000000 B
101011 C
101011 D D+E+F
000000 E 101011 D
+ 000000 F 000000 E
001000101111 (559) + 000000 F
00101011 3

00000000 Cq



Se +Co + St

10000111 Sg
001010000 Cq
+ 00101011 Sy

00110001111 S,
00010100000 C;

CG+S2+G

00000000 C1
00110001111 S,
+ 00010100000 C,

00100101111 S3
00100000000 C;

Full carry-ripple addition of S3+C3:

00100101111 S3
+ 00100000000 Cs3

01000101111 559

ABC DEF
X%;/ ﬁ%{f
S0 Co >1 ?1 level 1
SN\ #
S G level 2
QLY
S; G
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Addition Tree with 3-2 Reducer

LA A A A S AR A A

VYV A

SC SC SC S C

\\\?\ o

SC SC S S

~@

(2]
~@x [
PR}

(@]
(@]

At each level, reduce by a factor 3/2 = 1.5.

10

Complexity of multiplication of n bits number is now:
=~ logys(n) = 1.710gy(n) for inputs of n bits.
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Other Techniques

Several other complementary techniques (not discussed in this
class) exist for designing fast adders:

- Bit-pair recoding / Booth algorithm
- Wallace/Dadda Tree multiplier

26



Multiplication of Signed Numbers

Textbook§9.4




Multiplying Signed Numbers

- If the multiplicand is negative, we could sign extend during
additions

- Example: — 11 x 13 = 10101 x 01101 in two's complement (5
bits)

10101  (—11)
x 01101  (13)
1111110101
000000000
11110101
1110101
+ 000000
11011160001 (—143)

- Alternatively, if either the multiplier or the multiplicand is
negative, negate it and negate the result.
- If both multiplier/multiplicand are negative, negate both

27
numbers and proceed as usual.



Floating Point Numbers and
Operations

Textbook§9.7




Fixed-Point Representation

Consider these two examples of numbers:

- Integer: 72 =23 + 2% = 1001000,
- Real: 72.25 =777, How to represent this number in binary?

Fixed-point representation:

- Reserve a fixed number of bits for the integer part, and the
remaining for the fractional part

- For instance:
integer (24bits) fraction (8 bits)

[o[oo[o]o[o]o[e]o]o[o]o[o]o[o]o[o]1[o]o[1]o[e]o] o[ ]o[o]o[o]o[o]
31 87 0

001001000 010000002 = 23 + 26 +27%2 = 72 251@
Problems:
- Amount of precision after the point is fixed

- Cannot represent extremely large or extremely small numbers .


https://commons.wikimedia.org/wiki/File:Float_example.svg

Floating-Point Representation

Alternatively, we can represent numbers with a sign bit s, an
unsigned exponent exp, and an unsigned mantissa fraction m. E.g.,:

sign exponent (8 bits) fraction (23 bits)
i I

[o[o]o[o]o[o]2]1]o]o[1]ofo[o[o]o[o]o[o] o[ o] o[ o] o[ o] o] o] o] o] o] o[ o]
3130 2322 (bit index) 0

Nttps ://conmons wikinedia.org/wiki/File: Float_exanple.svg

S

All such numbers take the form ’ (—1)°> xm x 2°¢

e,

© 0.01000..., x 200000118 — (2=2),(26) — .25 % 64 = 1640

©0.11100..., x 200000010; _ (p—1 4 p=2 4 =3, (22) =
0.875 %4 = 3.514

Note that:

- The mantissa m is expressed as a fraction, e.g,, € [0,1)
- The exponent e can be represented in 2's complement (signed)

or using biased notation (explained later)
29
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Normalized Representation

Consider these following encodings for the same real number:

Base 2 S Exponent Mantissa fraction
0.0011 x 0 0000000 001100...

20

0.011 X 0 1111111 011000...

271

0.11x2=2 | 0 | 1111110 110000...

This encoding is wasteful (there’s more than one way to represent a
single number), and risks [oss of accuracy (the farther to the right
the leading ‘1" in the fraction, the fewer bits available to represent it).

What if we encode all our numbers as on the last row? In this case,
the first bit of the mantissa is always one; that’s also wasteful.

Using normalized representation:

[11x23 [0 [ 1111101 [ 1000000.. |

Now the number represented is’ (—1)% x (1.m) x 2° 30




Biased Exponent

Instead of using a signed number for the exponent, sometimes it
might be useful to use an unsigned value.

- This might simplify the hardware when comparing floating point
values (which involves comparing the exponents).

- Since the exponent must be able to represent both positive and
negative numbers, we subtract a bias from the exponent.

The value represented becomes| (—1)% x (1.m) x 2°-%135 | where e
is an unsigned (positive) number.

e | When e < bias, the represented number < 1.

The bias is typically chosen in the middle of the valid range for e.
Eg, if e is an 8-bit value, the bias would be 28/2 =27 = 128.

31



IEEE 754 Floating-Point Representation

Most modern machines use the |EEE 754 Standard for Floating-Point
Arithmetic. To represent single-precision (32-bit) real numbers:

- 1-bit sign s
- 8-bit exponent e with a bias of 127 ( # 128)
- 23-bit mantissa m (normalized)

The value represented is: [ (—1)% x (1.m) x 2°8~1%7

Note that:

- e=1111111 is reserved to represent not-a-number (NaN),
infinity, or special case (e.g., division by zero).

- e =0000000 is used for unnormalized numbers, i.e, numbers
smaller than 2-12% and zero.

For double-precision (64-bit), the exponent is 11 bits, and the
mantissa 52 bits.

32



Simplified Add/Sub Floating-Point Unit

ADD/SUB Sa Ss €\ ¢€p 1ma 1Mg

Miargest | Msmallest

n = |ea-eB| -

r-shift by n

Control )

normalize |

Sr

33



Steps for computation:

1. Subtract the two exponents, n = |ex — eg|;

2. If sign is negative, swap the two mantissas so that the mantissa
corresponding with the smallest exponent (Mspatiest) IS the
input to the shifter;

3. Shift Mematiest right by n;

4. Add/subtract mgpifreq and/from myargest, and take absolute
value.
ALU operation = f(s,, Sy, ADD/SUB);

5. Using the largest exponent eyargest and the output of the ALU
Madded, NOrmalize the exponent and mantissa;

6. sg depends on signs s, and sg and the resulting sign when
computing Magded-

34



Example: 2.25 —12.75 = —-10.5

« A=2255=10.01, =1.001; x 2!
- B=12.7519 = 1100.11, = 1.10011; x 23

S e m

0 10000000(127 + 1) | 001000---0
B|O 10000010(127 +3) | 160110---0
R 1 10000010(127 +3) | 010160---0

Step-by-step:

1. n = 2;sign: negative

2. Mgpatiest = Ma = 1.001000 -0, Margesy = Mg = 1.100110---0

3. Mghifted = Msmallest >> 2 = 1.001000---0 >> 2 =
0.010010---0

4. Madded = ‘mlargest - mshifted| =1.01010---0

5. mantissa is already normalized
= mg =010100-.-0,e =3+ 127 =130

6. sp=1

result = —1.0101; x 23 = -1010.1, = —10.54 »



This process looks like this in conventional long-hand arithmetic:

2.2519 = 10.01, = 1.001, x 2
12.7510 = 1100.11, = 1.10011, x 23

1.00100 x 21 A (smallest)
- 110011 x23 B (largest)
0.01001 x 23 A shifted
— 1.10011 x 23
00.01001 x 23 A with sign bit added
+ 10.01101 x 23 Btwo's complement
10.10110 x 23

|10.10110| x 23 = 01.01010 x 23 = 1010.10, = 10.54

Add the sign = —10.544.

36



Floating-Point Multiplication

In this context, multiplication is easier than addition:

1. Sum the exponents (and subtract the bias, else it is added twice)
2. Multiply the mantissas (using the implicit 1's)
3. Normalize
Example: A=2.5,B=0.75
2.519 X 0.7519 = 10.1, x 0.11, = 1.01 x 21 x 1.1 x271
1. Sum exponents: 1+ (—1) =0

2. Multiply mantissas: 1.01 x 1.1 =1.01 +0.101 =1.111

3. Already normalized = mg = 1110---0,
e =127+ 0=0111111

R=1111x2°=1.111=1.8751

37



Other Considerations

Although this will not be discussed further in this class, there are
other details about floating point representation/operations:

- Special values need special treatment:

Special Value exponent mantissa
+ 0o 255 0

+NaN (Not a Number) 255 £0

+0 0 0
Denormal numbers (£ 0.m x 27126) 0@ £0

- Exceptions: e.g,, division by 0, squared root of — 1 (result in
NaN)
- Rounding/Truncating: sometimes we may need to reduce
number of bits for the mantissa
- We may need to do more than simply dropping a bit
- e.g., in base 10, going from 4 digits to 3:
0.222219 =2 0.22219 Whereas 0.777719 =2 0.7781¢
38



Conclusion

This lecture has:

- Introduced how fast addition can be implemented hardware
- Explained how multiplication can be implemented in hardware
- Introduced floating-point number representation

- Shown how floating-point addition and multiplication work

The End!

39
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